Exercise 3

Identification of parameters of the vibrating system with one degree of freedom

Goal

To determine the value of the damping coefficient, the stiffness coefficient and the amplitude of the vibration excitation with one degree of freedom. These are to be understood as parameters of vibrating system.

Fig. 1 Scheme of the rig
Drawing at Fig. 1 presents physical model of the vibrating system which possesses the following elements:

- stiff beam connected to the support rotating node O
- set of coil springs with stiffness coefficient k,
- oil damper with damping coefficient c,
- driving spring with stiffness coefficient k_{1}.

A spring with a stiffness factor k_{1} is connected to the eccentric pin on the driving motor shaft. Rotation of the shaft creates a kinematic forcing of the upper end of this springs, approximately described as $a \sin \omega t$. Due to the force, the beam swings out of the balance position by an angle φ. The deflection of the beam is measured by a linear displacement sensor, defining the displacement x of the point of the beam, l_{x} away from the axis of rotation.

The equation of the linear motion of the physical model of the investigated system is as follows:
$B_{o} \ddot{\phi}+\mathrm{cl}_{c}^{2} \dot{\phi}+\left(\mathrm{k}+\mathrm{k}_{1}\right) \phi=\mathrm{k}_{1} l_{k} a \sin \omega \mathrm{t}$
where B_{o} - is mass moment of inertia relative to its rotation axis.
Dividing Eq. (1) by B_{o} and multiplying by l_{x} we obtain:
$l_{x} \ddot{\phi}+\frac{\mathrm{c}_{c}^{2}}{B_{o}} l_{x} \dot{\phi}+\frac{\mathrm{k}+\mathrm{k}_{1}}{B_{o}} l_{x} \phi=\frac{k_{1} l_{k} \mathrm{al}_{x}}{B_{0}} \sin \omega \mathrm{t}$
Introducing:
$l_{x} \ddot{\phi}=\ddot{x}, \quad \frac{\mathrm{cl}_{c}^{2}}{B_{o}}=2 \mathrm{~h}, \quad l_{x} \dot{\phi}=\dot{x}, \quad \frac{\mathrm{k}+\mathrm{k}_{1}}{B_{o}}=\alpha^{2}, \quad l_{x} \phi=\mathrm{x}, \quad \frac{k_{1} l_{k} \mathrm{a}_{x}}{B_{0}}=\mathrm{q}$,
we can rewrite Eq. (1) as:
$\ddot{x}+2 h \dot{x}+\alpha^{2} \mathrm{x}=\mathrm{q} \sin \omega \mathrm{t}$
where:
$2 h$ - represents damping,
α - natural frequency of the system,
q - kinematic excitation amplitude.

Fig. 2 Physical model of the rig
Equation (4) needs to be solved (remind yourself - how to determine such solution?) Its specific solution is function (5) which describes oscillatory motion of the model:
$x=A \sin (\omega t+\beta)$,
where A is amplitude of the excited oscillations and β - defines phase angle shift between actual value of the kinematic excitation and the model oscillations.
The value of A is defined as:
$\mathrm{A}=\frac{q}{\sqrt{\left(\alpha^{2}-\omega^{2}\right)^{2}+4 h^{2} \omega^{2}}}$.
As ω is varying in mathematical sense from 0 to infinity values of A can be understood as a function $\mathrm{A}(\omega)$. Its general form takes graphical representation shown in the drawing below.

Fig. 3 General form of the function $A(\omega)$ - broken line overprinted on typical values collected from experimental measurements - continuous line

As Eq. (6) contains yet unknown values of \langle, h, q, these values are to be treated as parameters which we are looking for in the exercise. The way reaching their values can be as following:

- Determine experimental measurements graph as in Fig. 3 by measuring amplitudes ot the beam amplitudes at different excitations at the rig (continuous line).
- Amplitude at very small (practically close to zero) excitation ω is marked as $A_{\mathrm{R} 0}$. Maximal value of the beam motion appears at resonance frequency ω_{m} marked as A_{rm}.
- Theoretical resonance graph shown with broken line in Fig. 3 should be a result of calculations using formula (6) with some assumptions.

We assume both graphs have to fulfill three (why?) conditions:

1. For excitation frequency ω close to zero both amplitudes A and A_{R} are to be the same:

$$
\begin{equation*}
A(0)=\frac{q}{\sqrt{\left(\alpha^{2}-0^{2}\right)^{2}+4 h^{2} 0^{2}}}=\frac{q}{\alpha^{2}}=\mathrm{A}_{\mathrm{R} 0} . \tag{7}
\end{equation*}
$$

2. At excitation equal to the natural (resonance) frequency ω_{m}, both amplitudes A and A_{R} are to be the same:

$$
\begin{equation*}
A\left(\omega_{m}\right)=\frac{q}{\sqrt{\left(\alpha^{2}-\omega_{m}^{2}\right)^{2}+4 h^{2} \omega_{m}^{2}}}=\mathrm{A}_{\mathrm{Rm}} . \tag{8}
\end{equation*}
$$

3. At excitation equal to the natural (resonance) frequency ω_{m}, both amplitudes A and A_{R} reach their maximum values:

$$
\begin{equation*}
\frac{\partial A}{\partial \omega}_{\left(\omega=\omega_{m}\right)}=\frac{q\left[-4 \omega\left(\alpha^{2}-\omega^{2}\right)+8 h^{2} \omega\right]}{2 \sqrt{\left(\left(\alpha^{2}-\omega_{m}^{2}\right)^{2}+4 h^{2} \omega^{2}\right)^{3}}}=0 \tag{9}
\end{equation*}
$$

When Eqs. (7), (8), (9) are understood as set of algebraic equations they can be converted to the following results:

$$
\begin{gather*}
\mathrm{q}=\frac{\omega_{m}^{2} A_{R 0}}{\xi}, \alpha^{2}=\frac{\omega_{m}^{2}}{\xi}, \quad 2 \mathrm{~h}=\omega_{m} \sqrt{\frac{2-2 \xi}{\xi}} \tag{10}\\
\text { where } \xi=\sqrt{1-\frac{A_{R 0}^{2}}{A_{\mathrm{Rm}}^{2}}}
\end{gather*}
$$

which allows to calculate numerical values of the unknown parameters \langle, h and q.
Next, we can identify real rig parameters' values as:
$\mathrm{c}=\frac{2 \mathrm{hB}_{0}}{l_{c}^{2}}, \quad k_{1} \mathrm{a}=\frac{\mathrm{qB}_{0}}{l_{k} l_{x}}, \quad k=\frac{\mathrm{B}_{0} \alpha^{2}}{l_{k}^{2}}-k_{1}$.
Earlier, some physical values were measured or determined from basic engineering formulas:
$B_{0}=1.38 \mathrm{kgm}^{2}, \mathrm{a}=0.003 \mathrm{~m}, l_{c}=0.54 \mathrm{~m}, l_{k}=0.54 \mathrm{~m}, l_{x}=0.24 \mathrm{~m}$.

Course of the exercise:

1. Measure the A_{R} amplitude vibrations for different angular velocity values ω; number of measurements should be about 15 . Determine the value of ω_{m}, for which the amplitude of vibrations reaches the maximum value of $A_{R m}$. Determine the amplitude value $A_{R 0}$ at close to zero excitation frequency. Copy your results into the table as below.
2. Calculate the parameter values α, h, q using the formulas (10).
3. Calculate the amplitude values A of the theoretical resonance plot using the formula (6) for those ω values for which the A_{R} was measured.
4. Draw a real and theoretical resonance graphs.
5. Calculate the values of the real system parameters k, c, k_{1} using formulas (11) and the values of the parameters given in (12).

Date: \qquad Name and Family name: \qquad
Group: \qquad

Exercise 3 Report

 Identification of parameters of the vibrating system with one degree of freedomMeasurements

ω	A_{R}	A

Calculation of the physical model parameters:
$\xi=\sqrt{1-\frac{A_{R 0}^{2}}{A_{\mathrm{Rm}}^{2}}}=$
$\mathrm{q}=\frac{\omega_{m}^{2} A_{R 0}}{\xi}=$
$\alpha^{2}=\frac{\omega_{m}^{2}}{\xi}=$
$2 \mathrm{~h}=\omega_{m} \sqrt{\frac{2-2 \xi}{\xi}}=$

Formula for calculation of the theoretical model amplitude:

$$
\mathrm{A}=\frac{q}{\sqrt{\left(\alpha^{2}-\omega^{2}\right)^{2}+4 h^{2} \omega^{2}}}=
$$

Calculation of the real model parameters:

$$
\mathrm{c}=\frac{2 \mathrm{hB}_{0}}{l_{c}^{2}}=\quad k_{1}=\frac{\mathrm{qB}_{0}}{a l_{k} l_{x}}=\quad k=\frac{\mathrm{B}_{0} \alpha^{2}}{l_{k}^{2}}-k_{1}=
$$

