Report – Excercise 2 EXPERIMENTAL ESTIMATION OF THE MOMENT OF INERTIA OF A MACHINE PART BY MEANS OF THE PENDULUM METHOD

Name:

Student ID:

Date:

Part 1

1. Mass moment of inertia of the connecting rod

1A. Period of free oscillations of the connecting rod supported in point A

Results:

 $T_{A1} = T_{A2} = T_{A3} =$

Average value of a single period

 $T_{A1av} =$ [s]

1B. Period of free oscillations of the connecting rod supported in point A

Results according to formula (8):

 $T_{B1} = T_{B2} = T_{B3} =$

Average value of a single period

 $T_{Bav} = [s]$

RESULTS

Distance	<i>a</i> =	[m]
Mass moment of inertia	$B_S =$	[kg/m ²]

Data: mass of the connecting rod:	<i>m</i> = 1.85 kg
Distance between supporting points:	<i>l</i> = 0.27 m

PART 2

2. Mass moment of inertia of the crankshaft

2A. Period of free oscillations of the flywheel itself:

 $T_{fw}1 = T_{fw}2 = T_{fw}3 =$

2B. Period of free oscillations of the flywheel with crankshaft:

 $T_{fwc}1 = T_{fwc}2 = T_{fwc}3 =$

RESULTS

Mass moment of inertia according to formula (14):

 $B_K = [kgm^2]$

Shear modulus (rigidity of the string) G =[Gpa]

Data:

Length of the supporting string	<i>l</i> = 0.590 m,
String diameter	<i>d</i> =0.005 m.
Flywheel mass moment of inertia:	$B_0 = 0.0707 \text{ kgm}^2$.

CONCLUSIONS AND REMARKS