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Abstract

There are many studies and various formulations of the problem dealing with self-excitated
oscillations of wheelset/rail system. In the majority of papers related to wheelset dynamics,
the problem is investigated assuming that the angular velocity of wheels is equal to zero and
the wheels are assumed as not deformable.

In this paper the results of the analysis high-frequency forced vibration of rolling wheelset
interacting with rails by means of springs carrying the loading in three directions of relative
displacement (vertical, lateral and longitudinal) and a spin of spring modelling rotational
resistance are presented.

A wheelset 1s modelled by the system of two elastic wheels connected by an rigid axle.
Wheel tyres are modelled as elastic curved Rayleigh beams with constant curvature,
connected with the axle by continuous, visco-elastic foundation of Winkler type (forming
wheel disc).

Introduction

The development of tracked transportation systems is promoted in several countries. With in-
creasing travelling speed the dynamic interaction between train and track becomes very
important. There is a need for simple but reliable models for wheel/rail systems in order to
study the dynamic etfects. The aim of this paper is to investigate dynamics of the model of
wheel/ rail system.

The track is modelled as one or two infinite Bernoulli-Euler beams or Timoshenko beams
on elastic or visco-elastic foundation, while the wheelsets are modelled as a various
continuous or lumped subsystems. Both subsystems are in relative motion which is assumed
of constant speed.

The solution of the problem is obtained applying the approach of travelling or standing
waves. Particular attention is paid to the stationary sofution and its stability. The
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determination of solution for Mathews problem (P.M. Mathews 1958) [1] solved for the
Bernoulli-Euler or Thimoshenko beam under moving harmonically oscillating load in [2]
make it possible to investigate problem of stability of hybrid models [3]

Study for simple track models

Theoretical formulations which are intended to provide calculation models are generally
limited to those influencing factors thought to be important. The particular significance of
dynamic problems explains why increasing attention has been paid to the study of oscillation
with the aid of theoretical calculation models which give a better insight into the phenomenon
of corrugation formation.

The most significant factor is rail or wheel tyre vibration under the action of a moving and
oscillating load. In an effort to find a solution, R. Bogacz et al. (1989) [2] examined the rail
modelled as a Bernoulli-Euler beam or Timoshenko beam on an elastic foundation subjected
to a moving and oscillating force.

To solve the problem, Mathews introduced a moving coordinate system connected with
the force (Fig.1) and expressed the response of the beam in the form of standing waves, which
allows one to obtain the solution only in a region of small velocities and frequencies bounded
by the curve of a ,.critical” solution (the first region in Fig.2 - O,v,,w,).
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S. Chonan [4] made 2z sumiier smesigation of Timoshenko beam under a moving
harmonically osciilating I Lake Mashews he also assumed the beam displacement in the
form of standing waves and comseguently could not find a general solution for the whole
speed-frequency range An aliermative sppeoach done in [2], which vields a solution in the
form of travelling waves, allows ome %0 estmate the displacements (and stresses) in the high-
frequency range

The equations of the Timoshenko beam motion regarding the effects of shear deformation

and rotary inertia are given as follows
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here 4 is the beam (rail) cross-section area, c is the elastic compliance modulus of the
foundation, £ is Young’s modulus, / moment of inertia of the cross-section area, x coefficient
describing the effective shear area, and p is the mass density of the beam.

Using the Fourier transform technique we obtain a set of linear algebraic equations.

Let as now consider the particular case of an pure elastic beam. We introduced a
coordinate system moving with the same velocity as the oscillating force.

The solution of Egs. (1) can be written in the form

W(Ro,r):W,(Ro)cosQr+W2(R0)sinQr, (3)
where: P
3
Wz“.SEFIOGO‘ ao:4é_ R():“Ox""z‘ T =wyl.

Substituting (3) into equation of motion (1) we obtain two ordinary differential equations. The
roots of the characteristic equation may be complex or all real or two may be real and two
complex, depending on the values of the coefficients of the polynomial.

According to the range of the load velocity V, corresponding solutions for displacement
and rotation differ in the number of waves ahead of the load and behind the load.

The discussion essential differences between the solutions for various values of velocity V
and frequency (2are given in [2].

As an example the displacements for the times ¢ =0, 74,74,/ are shown in Fig.7.

Physical and mathematical model of the wheel

The wheel tyre is modelled by an elastic curved Rayleigh beam connected to the axle by
means of continuous elastic Winkler-type foundation The elastic foundation constituting the
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wheel disc enables to transverse the loads in three directions: circumfzrential. radial and
vertical to the plane of a wheel. The use of curved beams theory causes the preservation of the
real shape of the tyre cross-section. Visco-elastic properties of the wheel matenal are describe
by the Kelvin-Voigt’s model:

éu,)
q/:—(k,uuj+cj—“—"J. (4)

cl

where
q;, g (j=1,2,3) - elastic foundation reactions and displacements in circumferential, radial and
transversal directions, respectively,
k; ¢; - elastic foundation stiffness and damping.
The following coordinate system are assumed to describe the 3-dimensiona! mathematical
model of rotating railway wheel (Fig.4):

W -polar system @R with a pole in the wheel

centre, nigidly connected with the rotating

e wheel; by means of there coordinates the

o]y geometrical axis of the tyre has been
Al described,

9 -polar system @, R with the pole in the wheel

AA centre, using to the description of the

_ rotation motion of the wheel,
H -rectangular, dexterorotatory system of coor-
¢ dinates & 7, ¢ with origin O on geometrical

3 3 axis o'f tyre and a positiqn given by spjatial
& = coordinate @ or ¢ axis &7,¢ constitute
tangential, normal and binormal to the un-
deformed axis of a wheel; this system of
coordinates is used to describe displace-
ments, internal and external forces and
; cross-section of wheel tyre.

The geometrical axis of wheel tyre has been defined by a locus of geometrical centres of
gravity of cross-sections undeformed wheel tyre. Assuming the angular velocity of the wheel
@, = const the relation between @R and ¢, R takes the form:

Fig.4. Coordinate systems and exciting forces

(p1:¢+¢o" (5)

The problem is now more complicated due to curved beam and much more dimensions
Detailed examinations of the problem in case of two dimension were carried out in [5].

The system of coupled differential equations which describe forced vibrations of the wheel
tyre rotating at the velocity ¢, , including visco-elastic properties can be written in polar co-

ordinates ¢, R in the form:
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where:
u,v,w - point O displacements along axes & 7,¢ (Fig.4),
8 - rotation angle of the wheel tyre cross-section in relation to & direction,
- reduced masses of the wheel tyre and disc,
s;- reduced mass moments of the first order,

ki, 1; - wheel tyre and disc reduced stiffnesses,

a;,d; - damping equivalent coefficients of the wheel tyre and disc,
4s 4n 9 mg mp mg - external forces and moments distributed continuously along

geometrical axis of wheel tyre.

The system of equations (6) is the mathematical 3-dimensional model of the rotating at the
angular velocity ¢, wheel. The first two equations refer to the motion of the wheel tyre in its
plane (circumferential vibrations and flexural radial), when the remaining two describe the
motion out the plane (flexural and torsional vibrations). The vibrations in the wheel plane and
vibrations out of the wheel plane are coupled by means of elastic and inertial forces.

Vibrations are excited by harmonic concentrated forces acting at the contact point S. Spin
moment A, has been also taken into account as a source of excitation. The positive senses of
exciting force have been assumed according to the senses of axis £ 7, £ (Fig4).

The solution of the system of equations (6) describing forced vibration of the rotating
wheel is sought for in the co-ordinates system @, R in the form-

"(¢’|.’)=2L' +——Z[7” t)cosng, + .f':(l‘);.-.;-:,} (7

The amplitude 4, of vibration of point O can be expressed 2s Dllows:
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Similarly the displacements v, w, & and the amplitudes 4., A.. A=
Numerical results

Figure S present in the form of frequency response functions the results of the numerical cal-
culations for forced vibrations of the railway wheel. Charactenistics refer to the point O for
coordinate @; = 7. Amplitudes 4,(7), 4{7), A7) and Ag(z) bave been determined for the
first eleven modes of vibrations and their values have been given in dB assuming reference
level 107! m. Separate cases concerning the following types of vibrations:

case ,,a” - circumferential vibrations A7),

case ,b” - flexural radial vibrations AL ),

case ,.c” - flexural vibrations out of the wheel plane 4.(7),
case ,.d” - torsional vibrations wheel tyre Adm).

The numerical analysis has been performed for the nominal wheel diameter of 0.95 m, for
the angular velocities @, of the wheel, which correspond to the linear velocities 0, 200, 400
km/h in the rolling motion.

The another results of the numerical calculations can find in [6l1.

It is interesting that for velocity about 200 km/h the amplitude of vibration with frequency

about 100 Hz is many times larger than for the velocity equal to zero or velocity about 400
km/h.

Model of wheelset

The physical model of wheelset is constituted by two elastic wheels, connected by the rigid
axle. The wheels are coupled with rails by linear Hertz springs, which transfer the forces in
three directions. But the moment of spin is assumed as a nonlinear function of normal force.
The wheelset rolls within the track without the creepage at the constant velocity.

The motion of wheelset is described by a set of six differential equations. The first three of
them describe the motion of its gravity centre, whereas the next three ones describe the
rotation about this fixed centre. The equations of motion of centre of mass are written in the
system X, ¥, I, whereas the equations of rotation about the centre, written in the system of
main central axes of inertia of wheelset x2, y2 2. Assuming @, = const and omitting the non-

linear members except dependence normal spring stiffness - stiffness of spin (Fig. 7) model of
the wheelset is obtained. The linearized model is used to investigate the rolling motion
stability while adequate linearization allows to determine the limit cycles [8].

The vibrations of wheelset for the assumed model may be divided into simple modes,
depending on symmetry or antymetry of deformation of the wheels.

The critical values of ¥ which result in the boundaries of the instability region & are
determined in the frequency-velocity plane by the straight lines V=}, tangent to the curves
obtained from condition of existence of nontrivial solution. In the range S, ={V: Ve [Vier Vaer
]} cf. Fig.6 the solution describes waves which propagate in the wheel tyre with amplitudes
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increasing in time. Beside this solution also a solution decreasing in time exists, thus,
according to Ljapunov’s instability criterion the range S is the range of instability.
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Fig.6: The critical values of velocity in the frequency-velocity plane

Now we will determine the limit cycles for particular cases. For the moment of spin ploted
in Fig. 7 and selected parameters of wheelset we obtain the numerical results shown in Fig 8.
The explanation of the instability modes illustrate Fig.9.
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The above results obtained for the pure elastic case without dampinz have an academic
importance only but pointed out the mechanism effect of instability.

The results of investigations of damped model and wheelset wath flexible axle will be
presented in the next papers. Similar to the case of continuous madsl of train-track inter-
action the energy dissipation may have destabilising influence.
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