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Abstract

The vibration and stability of two dimensional axially moving plate have been
investigated. On the base of a simple rotor system description a general velocity
proportional damping force is added to the moving plate equation of motion.
Approximate solution is obtained using the Galerkin method. Numerical results are
presented which show the contributions of axial velocity, the wheel support system,
external and internal damping to stability of a moving paper web.

1. Introduction

The class of axially moving continua, in the form of a thin, flat rectangular
materials encompasses such systems as band saw blades, power transmission belts,
magnetic tapes, plastic sheets and paper webs. Above a critical speed, the axially
moving material experiences divergent or flutter instability. For instance, flutter of a
paper web degrades quality, increases defects and can lead to breakage of the web.
Thus, characterisation of the vibration and dynamic stability of such systems is
requisite for the analysis and optimal design of technological devices.

From the dynamic point of view the translating systems and rotating systems
like rotors form together the class of gyroscopic systems. Vibration and stability
problems of rotating systems received considerable attention in design of rotors within
the last century. One can find great many references in this field (e.g. [1] - review).

On the other hand a lot of earlier works on dynamic problems of translating
materials focused on dynamic investigations of string-like and beam-like axially
moving systems (e.g. [4] - review, [5]). In the case of two-dimensional, axially moving
web, the exact dynamic solutions, satisfying the non-linear, coupled equations
governing the web's motion, probably cannot be determined in closed form. Recent
works in this field use approximate solutions and focus on undamped cases [6), [7].

The aim of this paper is stability analysis of axially moving plate when internal
and external damping is taken into account. The damping model is defined on the base
of simple rotor system description.

2. Mathematical model of gyroscopic system

The vibrations of rotating or translating elastic systems are described by a
system of ordinary differential equations of the matrix form
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Mg+Cgqg+Kq=0 (1)
Equations of the form (1) are obtained by direct lumping of the mass, damping and
stiffness properties of the elastic system, or by discretization of the partial differential
equations derived based on distributed properties. The important features of these
systems is that the matrices C and K depend on the constant velocity of rotation and
translation of the elastic system. These velocity dependent matrices arise due to
coriolis and centripetal acceleration effects.

2.1. Rotating shaft

74
a> A rotor system where the mass m is mounted on the ver-

tical shaft of the flexural stiffness £ is shown in Fig.1. The rec-
tangular stationary coordinate system xyz whose z axis coincides
with the bearing center line is adopted. The movable coordinate
system &£z is connected with the mass-point 7. The angular ve-
locity of the rotor @ is constant. The motion of the mass is dam
ped by external damping which is characterized by viscous dam-
ping coefficient ¢, and by internal damping, which is characteri-
zed by the coefficient c.
It is well-know the equations of transverse vibrations of

rotating mass m in the movable coordinate system [1]

m& —2maw i+ BE - fron+ (k-ma*)s=0
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where:
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Fig. 1. Rotor system.
Thus, one can define the matrices in (1)
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2.2. Axially moving plate

The transverse vibrations of transmission belts, band saws and paper tapes can
be represented using an axially moving plate model as shown in Fig.2.
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Fig. 2. Axially moving plate.
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The equation of the transverse vitration for the undamped case is given by [3]

phw., +2phcw. +(xpkc®—Pyw _+Dw__ +2(vD+D, Wy, +Dw. =0 (4)
where:
w - the transverse displacement of the plate;
p - density of the plate;
h - thickness of the plats;
¢ - constant axial velocity;
x - rolls support constant, 0<x <1
P - initial static tension in x-direction;
D = (ER’)/[12(1+7)] - flexural stiffness of the plate,
D, = GH/6 - plate's stiffness coefficient;
E - Young's modulus of the plate,
G - modulus of non-dilatational strain of the plate,
v - Poisson's ratio.
The boundary conditions at the free edges y = O and y = b, are
W +(2—v)w.m_ =0; w_+vw_=0 (5)
and at the simply supported edges x = 0 and x = /, are
w=0; w_+v w, =0 (6)

On the base of the rotor's equations (2) a general velocity proportional damping
force of the form (8 w, + B,ew. ) is added to the left-hand side of (4) in the modelling
of actual damping

phw., +2phcw.  +(phc’-P)w. +Dw,__ +2(vD+D)w,,, +
+Dw,  + B, w, +B,cw, =0
To reduce (7) to the form (1) one can utilize the Galerkin's method and a finite series
representation of the transverse displacement

w3 0)=> S 6,(0,(x) g, (0) ®)

i=1 j=1

)

where: ¢(y), ¢(x) - approximating functions satisfies boundary conditions,
gj(t) - the generalized coordinates.

Assuming approximating functions ¢ and utilizing Hamilton's Principle the
elements of the matrices in (1) can be evaluated.

t b
my=pAf[[o,6,dcdy
00

2p Ac, §.,, + P, 6, 4, )dx d
J(pc¢,¢,,+/3¢¢> ly ”

gz
k= [(co v’ ~P)$,4,,.+D4,8,.. +D$$,..~20D+D) .6, +
+D g, ¢i‘my + Cﬂ2¢i¢j'x]dx dy

The resulting n second order ordinary differential equations can be obtained.
These equations are approximate in nature because of a finite series representation in
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(6). For n = 3, m =1, sinusoidal approximating function and plane stress the M, C and
K matrices in (1) have the following form

I _8pAc

!
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(10)
The complex eigenvalues of the system are determined in the form

A,=0,+iw; Jj=12..n; i=4-1 (1)
and can be obtained from the eigenvalue problem associated with the equation (1).

3. Numerical analysis

Numerical calculations of natural frequencies of the moving plate system have
been carried out for the following data of an actual paper web [6]: length [ = 1.194 m,
width b = 0.597 m, thickness 4 = 0.3 mm, static tension P = 32.835 N, density p =
133.33 kg/n’, Young's modulus E = 5 10° N/n??, Poisson's ratio v=0.3.

At first to test the accuracy of the computational method the eigenvalues of
undamped moving steel string (p = 7800 kg/n’, P = 15N, [ =1 m, d = 0.001 m) have
been calculated for » = 3 and compared with the exact solution [2]

5 2
o, =17 [P oA -
1 \pA P

Results of calculations are shown in Fig.3. For the first eigenvalue the discrepancy is
less then 1%. Thus, three approximating functions have been used in next numerical
calculations.
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Fig. 3. Eigenvalues of the moving string.  Fig. 4. Eigenvalues of the moving paper web.
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For the moving paper web the plots of first two eigenfrequencies of the
undamped system (f = 0) and for the case when only external damping is taken into
account (B, = f, = f = 1) are shown in Fig4. For the undamped system the axial
velocity ¢ diminishes absolute values of all imaginary eigenvalues until they vanish at
the critical value c_. For damped case (8 = 1) conjugate complex eigenvalues of the
system appear and for the crtical axial velocity value the real part of the first
eigenvalue passes through zero. That means divergence type of instability.

The effects of intemnal and both extemnal and internal damping on dynamic
behaviour of the moving paper web ar= shown in Fig.5 and Fig.6, respectively. In wide
considered range of damping sigmificant differences of critical axial velocity value
have not been observed. All above plots have been obtained for the rolls support
constant value k= 1.
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Fig. 5. First eigenvalues of the paper web. Fig. 6. First eigenvalues of the paper web.

Furthermore, the effect of the rolls support stiffness on the critical axial veloci-

ty was investigated. For the rolls support stiffness x = 0, the rolls are free to displace
0052 . relative to each other under web tension va-
riation. For k=1, the two rolls are rigidly
fixed with respect to each other, eliminating
web tension increase with the axial trans-
port speed c. For O< x < /, the rolls support
system has finite stiffness and the axial ten-
sion decreases with ¢. The plot of the criti-
cal axial velocity of the undamped paper
: web ¢ versus the rolls support stiffness
%2 0.4 06 0.8 1 value x is shown in Fig. 7. The critical
velocity is considerably dependent on the

Fig. 7. Critical axial velocity of the web.  rolls support stiffness.
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The effects of the moving paper web properties such as Young's modulus value
E and thickness of the web & on the critical axial velocity c_, are illustrated in Figures 8
and 9, respectively. The values of £ and 4 were changed in the range +10% with res-
pect to their nominal values, which have been presented in the beginning of this
Chapter. The range +10% corresponds to measuring accuracy of the paper web
properties. In the considered ranges the critical axial velocity is nearly independent on
Young's modulus and thickness of the moving paper web.
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Fig. 8. Critical axial velocity of the web.  Fig. 9. Critical axial velocity of the web.
4. Conclusions

In the paper stability analysis of two dimensional axially moving plate is pre-
sented. On the base of the rotor system description a general velocity proportional
damping force is added to the left hand side of the moving plate equation of motion.

Results of numerical investigations show the linear problem solution. Numeri-
cal calculations of natural frequencies of the moving plate system have been carried out
for an actual paper web data. In investigations the effect of the axial transport velocity,
external and internal damping, the rolls support stiffness and the paper web properties
on natural frequencies and stability of the web motion are presented.

For both undamped and damped system divergence type of instability has been
observed. In the case of undamped system the lowest natural frequency decrease with
increasing the axial velocity at the rate mainly dependent on the rolls support stiffness.
In wide considered ranges of damping coefficients significant differences of critical
axial velocity have not been observed. The effects of the paper web properties such as
Young's modulus and thickness in the range corresponds to their measuring accuracy
on the critical axial velocity may be neglected.
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