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Abstract

It is an original result of this paper to show that for thin-walled laminated shafts an
important feature is related to the Brazier’s effect, which consists in considerable de-
formations of thin-walled cross-section contour during bending. The rotating angle-ply
symmetrically laminated circular cylindrical shell is treated as a beam-like structure. The
shaft is subjected to combined loading: a constant torque and an axial time-dependent
(stochastic) force which can be described by the Wiener process. The uniform stochastic
stability criteria involving a damping coefficient, a rotation speed and geometrical and
material parameters are derived using Liapunov’s direct method. Formulas determining
dynamic stability regions are written explicitly.

Introduction

Recently, composite materials find more and more applications for high-performance ro-
tating shafts (1], [2]. Thin-walled, usually angle-ply laminated tubes relatively easy meet
requirements of torsional strength and stiffness but are more flexible to bending and have
specific elastic and damping properties which depend on the system geometry, physical
properties of plies and on the laminate arrangement. Such systems are also sensitive to a
lateral buckling.

Thin-walled shalls reveal a considerable deformation of cross-section contour during bend-
ing. The dynamic stability of rotating composite shaft described by partial differential
equations (3] was investigated using the direct Liapunov method. The ovalizing phe-
nomenon implying a degresive elestic behaviour is named Brazier’s effect (see eg. [4]).
This results in a specific degressive geometric nonlinearity. It can be shown that the
Brazier’s effect can be much stronger than the effect of curvature nonlinearity treated as
dominating for isotropic axially not restrained shafts [3].

Another important problem of this paper is the description of the global damping of a
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where according to [9] the diffe: ..t engineering constants Ey;, Ej2, Gz have different
viscoelastic properties described 51y, fa2, P12, respectively.

By analogy we can write the reduced in-plane stiffnesses in the form of operators

Q= _fj + Q_:'Ijsa (7
where ij and Q:—'J— are given as follows
Q% = En, Q5= En, Q4% =G, Q1 =Pfubu, Q3 =PBnEn, Q%=>5uGn.
Finally the constitutive equation in the first order approach has the form
o = Eo(e + ié), (8)

where Ep = Q_Tl S (sz)z/Qéz» B =( _ingz i Q§2Q¥1 s 2@7;0{;);’(0:;0’&: s (Q;'z)z)
Geometric relation

The shaft transverse displacements u and v in the immovable coordinate system (y, z)
can be expressed by the polar displacement w as follows

u = wcos q, v=wsna 9)

Let's consider the differential area element dA of the ring-shaped cssssection. The
distance from the elastic neutral stress axis{ to the element {paraliiel 8o w ' %= =qual to

¢ =Ycosa+ Zsina (10)

Neglecting the curvature nonlinearity, what is rigorously justiied Ser Ssmimation angle
0 < 8 <TI1/6 [5] we can write the strain in the form

£=—fwz(l —yuwk) (11)
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Two times differentiating Eq. (3) with respect to z, using Eq. (10) and substituting
into Eq. (11) yield

£ == Yu:; + ZU,:z) (1 . ’711)‘22:) (12)

Due to the rotation with the constant speed w the following formulae are valid

Y = —wZ, Z=wY (13)

Differentiating Eq. (12) with respect to time and and substituting Eqgs. (13) the strain
velocity in a linear approach is equal to

€= =Y (Uzet + W02z) = Z(V 20t — WU ;) (14)
Equations of motion

Equations of motion of the center shaft line in the (u, v) coordinates have the form

pA(U,u + h]u,g) + F(t)u,,, = MZ,::: (15)
pA(U.H + hlv,l) + F(t)v,::z = MY.::: (16)

where p is the averaged density of the shaft, &, is the external damping coefficient, and
F(t) represents stochastic axial force, which can destabilize the smooth rotation motion.
The first components (due to a pure bending) of bending moments present in Eqgs. (15)

and (16) are calculated by the integration of elementary moments over the shell crossection
in the following way

(My, Mz) = / (Z, Y)O’dA (17)
A

where the inner stress o is obtained substituting Egs. (12) and (14) into the constitutive

Eq. (8)

o= FE, {—(Yu,u + Zvz)(1 - '7111:2114) -b (Yo twvl)+ Z(V 2zt — wu.,u))} (18)
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After integration we have

Mz = —EoJ {uz. [1 — 7 (v, + v2.)] + Preuze + Breww -} (19)

My = _EOJ {v,z:: [l S (u.zz:: oK v'zz-z)] + ﬁlev.nt i3 : 515-1‘.—:1\ \20)

The second components of bending moments are produced by a torgue A, due to rota-
tions v, u. of the shaft axis

M= M,v, (21)

My = —Mu,_ (22)

After substituting Egs. (19), (20), (21) and (22) into equations of metsen (15) zad (16)
and dividing by pA we have the final form of dynamic equations of rofating shafis

U+ hiug+e [u,n(l — 7“’,2::)] i F Bre(t zzzot + WU zoez) + S(tJu =+ Lo =0 (23)

v+ hivete [U.u(l = ’Yw?u)] .t Bie(Vzzea — WU zzoz) T S(Eoe—Emo_ =0 (24)

VT

where e = EoJ/pA,  S(t) = F(t)/pA, L= M,/pA.

Assuming that the stochastic axial force S has the mean value Sp and the time dependent
wide-band Gaussian part with the intensity ¢, which can be expressed as the formzl time-
derivative of the Wiener process W,

dw
S(t) = So+§7

[SV]
W

the dynamic equations (23) and (24) can be rewritten in the It6 form
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du = wu,dt (26)
du;, = — {hlu,; +e :u::.l - 7"’-2”)],:: + fre(U zozot + WU zz22) +

+ Sou o + Lv,zzz} dt — qu . dW (27)
dv = wv,dt (28)
dog = —{hvite[oall —qud)] |+ Bre(vomest — wiees) +

+ Sov,zz — Lt 2z } df — v AW (29)

The shaft is assumed to be simply supported at its ends. As the torque M, are acting
at the shaft ends it is necessary to remind Eqgs. (21) and (22). When the torque is pure
tangential to the deformed shaft axis in supports the bending moments vanish. It means
that the transverse displacements and the bending moments are equal to zero

u(0,t) = u({,t) = v(0,t) =v({,t) =0 (30)
uz2(0,t) = uze(4,t) = v22(0, t) =vz(4t) =0 (31)

Uniform stochastic stability analysis

In order to investigate the stability of trivial solution u = v = 0 corresponding to the
smooth shaft motion it is necessary to introduce a precise stability definition. The trivial
solution is uniformly staochastically stable if the following logic sentence is true

A AV IC,0), 00, 01LS 7= Plosplt, 0,01 2 9 < 6

€206>01>0

where |[u(.,),v(.,t)|| denotes a measure of distance of solutions with nontrivial initial
conditions from the trivial one.

We choose the Liapunov functional in the energy-like form [10]

Pud Gpe.
V = 5‘/0 {ui + ('Ur‘g + h]u o ,Ble‘u',:x:::::::)2 7n U_2( - = (UJ - - hlv =5 ﬂlevyzr’-'z)z-l_
+2e(u’, +v2,)[1 - %(u?u_ +v2.)] —2S,(uk +v2) }d:c <V (32)

where the functional V, corresponds to the linearized problem 7 = 0.
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For the sufficiently small curvature w?, the functional of the nonlinear problem is po-
sitive. Therefore, the functional V is locally positive-definite and we can introduce the
measures of distance as the square root of functional (32)

flu, vff = V*/2 (33)

The measure of distance can be upperbounded in the following way. 5y the nonlinearity
parameter ¢, satisfying inequality ¢ <1 —qw?_/2,

N | -

le
llu, 0|l < ;(1 -8, £ €

oo —y

It is easy to notice that,

In order to calculate the differential dV along the trajectory of egs. 28 /2% we use
the appropriate generalized [t6 lemma (12]

4
dV = / {u,tdu,t + (u,t + hlu st ﬂleu,z::z) (du,t =+ hldu -7 Bledzﬁ_.—-;.- ) + v dov.+
o -

+(v|, + h1v + Prev zzzz) (dvg + hadv + ﬂledv,,,,,) + 2e(u zodtt oz + O lim :: - ;‘:_,_] -

—ey (u_2n+v'2u) (. 1. 40,2200 ;) — 25, (u2du - + v,zdv',) }d.z-}-/.‘::{;i___: v _)dzdt
°

(36)

Eliminating du, dv, duy, dv, by means of Eqs. (26)-(29) and imtegrating from

t = s to 75(t), where 75(¢) is the first random time of a trajectory exit from the comain
V12 = §, conditionally averaging (£), and taking into account inequality (35 w= have

EV(ms(t)) = V(s) — € . F(t)dt (37)

s
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where 1
F = / {hi [’ + v2] + Bre [ 2z +wv )’ + Prelvan — wu o) +
0

+p€? [u?nu + v?nu] (26 — 1) — pieS. [u?zu + v?ux] + hie [u?n_ + v:‘;x] (26 — 1)+

—(u)2ﬂ16 Sie CZ) [u..zrr =k v'?:,'z:] = hlso [u’,lz- o e UZI] + B‘ICL [u,rzzz:v,:zz = v.rzzru.::r]

+ hlL [uv,:z: oL vu,z::] + 2L [u,tv,z:z = v,tu,zrx]} dI (38)

Rearrangimg the first and the last terms of integrand in Eq. (38) we have

4 L 2 L 2 .
f = / hl (u.t T ‘};"v,rrr> + (v.t 3 h_'u.z'z:r> + ,Bl('3 [u.z:xt + wv,r:] +
0 1 1

+ﬁ16 [U.IIl 5 wu-¢=]2 5o 16162 [u?:z:rz + v:zzz:rr] (26 o 1) = ﬂleso [u:z:zz 7t v:lz:::] +

+h16 [u?n + U;IT’] (2€ - l) - (weﬂle L (2) [u.zz: 1: v,zrz] i hlSo [u.zz + 'U.ZZ‘] +

+ v?z'zz] + hlL [uv,rr: = vu,:x:] + ,BleL [u,zz:xv,:t: =3 v,xrrzu.z::x]} dI (39)

s h— [u,zzx
1

Neglecting the first four positive terms of integrand and using the elementary inequality
for arbitrary n € (0,1)

1 . 55 5o
tab=tnab/n < 5 (an" + ¥ /) (40)

we calculate the lowerbound of the functional 7.
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; 3 2y 2 2 Ble L 2 2
Fz | (B 1=7"/2) [Whmse  Viee] = ( PreSot S+ 57 | e + 00 +
0 1 i

y B
+ [he(26 = 1) = Bre = ¢¥) W, + 2] = S, [ul +02] — -7 + v’)} dz  (41)
1

Using the supermartingale property and proceeding similarly to the proof of Chebyshev’s
inequality we find that the trivial solution of Egs. (26)-(29) is uniformly stochastically
stable if the functional F is positive-definite. It is equivalent to the following algebraic
inequality

{[fon (e -3) L3 -] -2+ 2N Q)

-

; 7\2 2 & '
2 2L N il GORMER NG o
+h16(26—1)—w[)’16—<](1) h;a.}(l) 30 (42)
The critical angular velocity can be obtained maximizing over admissible { and 7

= o {5 (-1 - 5) () -5 -2+ 2} () +

+hie(26 — 1) —<2} G)z = hlso} (%)2 - %}/&.eﬁr‘ (43)

Increasing of ¢ enlarges the stability domain in system parameter space but decreases
the stability domain in the state space described by the norm [.J. It means that the
region of initial disturbauces (initial conditions) described by the norm becomes smaller.
For the constant axial force ¢ = 0 and the stability domain in variables o*. £, So is
defined by the following inequality

< oD -1~ so] [(dﬁ(?)z ¥ hl] [}y (44)
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The constant component of axial force decreases the critical rotation speed w. As for
& — 1 the domain of the positive-definiteness tends to zero (cf. Eq. (35)), the maximum
value of w is available for ¢ ~ <. Similarly, the increase of noise intensity ¢ decreases the

o . «
admissible rotation speed.
Conclusions

A method has been presented for anzlysing the stability of rotating angle-ply composite
shafts subjected to a torque and an axial stochastic force. The main conclusion is, that due
to the ovalization of composite shafts and weakening geometrical nonlinearity the derived
stability criteria have the local character. The critical parameters (e.g. rotation speed)
depend on the nonlinearity parameter bounding the measure of disturbed solutions. The
increase of the constant component compressive force, the intensity of stochastic force
component and the torque destabilize steady-state shaft vibrations.
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