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Abstract

A dynamic model of a piston engine mounted in the aertoplane has
been formulated. The equations of motion have been identified for 4-
cylinder boxer Franklin installed in the Polish aerobatic Koliber plane.
Comparision of engine body acceleration RMS values obtained by
measurement and simulation has given positive results. The engine body
vibrations in the plane of the reactive torque of forces have been
investigeted in the Matlab-Simulink environment and with the help of the
INSITE software. It has revealed relationships of system responses to its
parameters and excitation values to assure a methodical approach to the
suspension synthesis. The asymtotic methods have given multidimensional
expressions for natural frequencies and resonance curves. The numerical
methods have been applied to establish stability boundaries, chaos
occurrence, routes to chaos and to identify chaos symptoms.

1. Introduction.

The subject of this study are vibrations of a piston engine mounted
in the aerobatic plane. The aim of the study is to define suspension
dynamic properties in relation to the suspension elasto-damping
parameters. The diagnosis and isolation of aeroengine rubber mountings
were investigated by Carr et al [1], Jez [2], Swanson et al [10] and many
other researches.
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During its operation a boxer engine generates dynamic loading
applied to the plane and is submitted to kinematic loading created by
aeroplane aerobatics. The former one is customarily treated as determined,
and the latter one — as stochastic and neglected here, because its frequency
is distincly lower than the engine proper frequency spectrum. From the
piston engine investigations we know that its main excitation is the torque
of forces acting in the plane perpendicular to the crankshaft axis and
transmitted to the aeroplane structure by a set of several rubber mountings.

Recent investigations carried out by Moon [6], Kapitaniak [3,4],
Schuster [9] and other show that chaotic behavior in nonlinear systems can
be encountered by means of numerical simulation. In the present study of
dynamic behavior of the aeroengine, the chaotic symptoms were identified
during its operation at very small RPM with very small suspension
stiffness.

2. Mathematical model formulation and identyfication.

The physical model shown in Figure 1 contains the independent
horizontal displacement y and two linked movements: the vertical
displacement z and the rotation ¢. The suspension of this plane model
comprises three rubber mountings: two of them transmit forces only in the
direction of z axis and the third one — only in the direction of y axis.

Ky Figure 1.
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The following differential type constitutive relations have been elaborated:
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where:
{=2z/l, v=y/] — normalised co-ordinates,
m, I, — system mass parameters,
kyo, k;0 — coefficients of linear stiffness,
ky1, ko1 — coefficients of nonlinear stiffness.
Excitation and damping torques are expressed by the formulas:
Jj=6 s
L(t) = Y “Ecos( 2iot +V,) (4)
i=1 Ix
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where:
L; — amplitude of excitation,
cay — coefficient of hysteretic damping,
v; — phase angle,
o - frequency of excitation.

The time diagram (Figure 2) and components of the exciting torque
have been determined by means of measurements and customised
programs.

The coefficients of nonlinear, progressive stiffness and hysteretic
damping have been found with the patented method of rubber mounts
dynamical identification [2].

Equation (3) describes damped vibrations aiming at the equilibrium
positon. So, in our computatxons we have considered the
two—degree—of—freedom system given by equations (1) and (2). In the
numerical analysis we have also taken the linear viscous damping
(coefficient c) as a substitute of the hysteretic damping.
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Figure 2. The time diagram of the exciting torque in engine cycle.

Taking into account parametric, dynamical identification and
substitutional, linear damping, we can rewrite the model in the form of the
first order differential equation, suitable for applying numerical methods of
analysis:
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In our numerical simulations we have assumed the following values
of parameters m—l21[kg] L=3. 71[kgm 1, 1=0.121[m], k;=175.7[kN/m],
k=12.3%10° [KN/m’], ¢=500 [Ns/m], L;=107.2[Nm], L,=198.5[Nm],
Ls=82.4[Nm], L~44.5[Nm] Ls=19.3[Nm] Ls=12.6[Nm], v,;=1.37[rad],
v;=-0.70[rad], v;=-0.46[rad], v,=1.09[rad], vs=0.50[rad], vs=0.00[rad]. The
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amplitudes of excitation are characteristic of the horizontal flight of the
aeroplane.

Equations (6a,b) and (7a,b) describe the two—degree—of-freedom,
nonautonomous, dynamical system which is defined in the four-
dimensional phase space.

3. Stability and chaos analysis.

The model’s stability has been additionally verified by applying
various excitations: heavyside impulses, white noise and harmonic
excitation. The investigation of independent, horizontal displacement
described by equation (3) has not revealed any instability. Two remaining,
coupled movements have been studied with the help of the Simulink model
(Figure 3). It has been observed that the linear version of this model is
stable.
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Figure 3. The scheme of the four—dimensional Simulink model (coupled
displacement z and rotation @)

When nonlinear stiffness was added, the model was repeatedly
losing its stability with a small increase in the input value (from 11,7922 to
11.7923 of dimensionless torque value) — Figure 4.
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Figure 4. The stable behavior of the model under consideration (a) —
F,=11.7922 and the instability of this model (b) — F,=11.7923.

To explain this phenomenon the numerical computations using the
software INSITE [8] have been carried out. The Analysis carried out has
verified the stable behavior of the examined suspension for the operational
range of parameters. For a large value of the excitation frequency

characteristic of the horizontal ﬂlght (@=262[s"]), the amplitute of
vibrations is very small — about 10* [m]. It causes that the nonlinear
coupling between equations (1) and (2) disappears and we have two
separeted systems described by linear equations. We can get the periodic
solution of these equations using analytical methods.

However, for a smaller value of ‘the excitation frequency
(©<25[s"]) and a smaller value of the linear stiffness rate (k,=20[kN/m]),
a very big increase in the deformations (amplitude of vibrations), unreal
from the functional point of view has been found. It leads to the apperance
of the nonlinear coupling (negative feedback) between the equations under
consideration.
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To find out the chaotic responses of the model to multidimensional
excitation, the following methods of dynamics investigation have been
applied:

e Time diagrams,
e Phase portraits,
e Poincaré maps,
e Bifurcation diagrams,
e Lyapunov exponents.

The numerical simulations of this two-degree—of—freedom,
nonlinear system demonstrate various chaotic behaviors. The phase portrait
and the Poincaré map in Figure 5 show us the chaotic solution of the
analysed system. Randomly distributed points of the Poincaré map are
characteristic of a strange chaotic attractor. Also the bifurcation diagrams
shown in Figures 6 and 7 have a fractal structure which is typical of chaos.

These bifurcation diagrams have been calculated and drawn as a
function of the control parameter . First of them (Figure 6) presents the
cascade of period doubling bifurcations. It’s one of the well-known routes
to chaos. An increase in the control parameter causes a series of next period
doubling bifurcations and the period of vibrations goes to infinity.
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Figure 5. The phase portrait (a) and the Poincaré map (b) of the analysed
system; k,=20.0[kN/m], k,;=20.0%10° [kN/m’], ®=13[s"].
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Figure 6. The bifurcation diagram of the analysed system showing the
.cascade of period doubling”; k¢=20.0[kN/m], k,;=20.0%10°

[KN/m”].
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Another route to chaos, called the ,,break of torus”, is connected
with a series of Hopf bifurcations. We can see (Figure 7) that, as a result of
the first Hopf bifurcation, the qu351—penod10 solution (torus) is genereted
from the limit cycle (for ©=16.465[s"']). After the next Hopf bifurcation
the torus loses its stability and a strange chaotic attractor appears (left side
of Figure 7).
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Figure 7. The bifurcation diagram of the analysed system showmg the
break of torus”; k,;=20.0[kN/m], k,;=20.0%10° [KN/m"].

For the system shown in Figure 5 the set of Lyapunov exponents is
as follows: A;=4.868, A,=1.530, A;=-4.077, As=-8.426. The presented
spectrum of Lyapunov exponents contains two positive values. It allows us
to expect that the system under consideretion has a hyperchaotic solution
[4] for chosen values of system parameters.

4. Conclusions.

The dynamical analysis of the suspension model allows us to
formulate the following conclusions:
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1. Model elaborated by means of classical methods of dynamics and
identified for a piston Franklin—4 aeroengine powering the light
PZL-110 Koliber aeroplane has been verified by comparison of
acceleration RMS values obtained with experimental and simulation
methods.

2. The simulated behavior of the plane, nonlinear suspension model has
shown instability only for very big, unrealistic deformations.

3. In the aeroengine operation range, the model exhibits a limit cycle of a
very small amplitude; here the model natural frequencies are distincly
below its excitation spectrum.

4. The rich chaotic behavior has been observed during low engine RPM
and small suspension stiffness (kzo—ZO[kN/m]) with the correspondmg
linearized natural frequencies: ©=18.1[s"], @=12. 56[s™']. During the
analysis of bifurcation diagrams, two typical routes to chaos have been
found - the ,,cascade of period doubling” and the ,,break of torus”. The
examined model shows also hiperchaotic solutions, characterized by
two positive values of Lyapunov exponents.
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