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Abstract

In the paper an attempt for the probabilistic homonigenization in heat conduction problems
of fiber composites is presented. On the basis of the effective modules approach applied to
scalar fields, numerical method of heat conduction problem homogenization based on the
Monte-Carlo simulation (MCS) technique is proposed and implemented in the program
MCCEFF. This program has been used to numerical studies of stochastic sensitivity of
effective heat conductivity probabilistic moments to different input geometrical as well as
material random parameters of the composite being modelled. Computational experiments
provided in the paper show probabilistic moments up to fourth order of effective
conductivity coefficient as well as its upper and lower bounds. Moreover, the probabilistic
convergence of results with increasing number of random trials used in simulation has
been studied. Finally, effectiveness of computational algorithm worked out is verified on
the example of heat conduction problem in fiber reinforced composite which has been
computed by the use of program ABAQUS.

1. Introduction

Main problem with computational analysis of multicomponent (composite)
media by the use of different discrete grid or non-grid methods is scale
effect ocurring in their structure [7]. The problem simplifies when
composite considered appears to be periodic what means that there exists
some geometrical cell (periodicity cell or representative volume element)
which, due to geometric translation, can cover the whole structure.
Considering the fact that in most of engineering problems the scale factor
relating periodicity cell with whole structure is very small, discretization is
very complicated process. To omit this problem, so-called homogenization
method is introduced, which allows us to replace original multimaterial
composite with equivalent one that can be characterized by homogeneous
tensor of material properties. Thus, we can model composite structure
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without differentiating the regions belonging to different materials what
significantly simplifies meshing procedure [24].

The next engineering problems is how to use experimental data described
by mean values and standard deviations of material and physical
parameters of the composite constituents to evaluate these effective
parameters of the whole composite. Moreover, it is observed that
microgeometry in the most of composites have generally random character
which can be decisive for their overall macroscopic behaviour. Considering
these facts, the homogenization method should be formulated including
randomness of composites occuring in different scales in most of
constitutive parameters. Some mathematical models have been worked out
many years ago [4] however without any numerical implementation. The
papers devoted to modern homogenization problems, especially in the
context of thermal problems are shown and discussed in [8,21].

The main idea of the paper is to formulate and solve the homogenization
problem for heat conduction in two-component fiber-reinforced composites
where the conductivity coefficients are random Gaussian variables. The
first two probabilistic moments - the expected values and variances of these
variables are given. The micro as well as macro geometry of the composite
is treated as deterministic. To calculate effective conductivity of the
composite the effective modules method is introduced which introduces so-
called temperature homogenization function which is periodic periodic on
external boundary conditions of the periodicity cell. The natural boundary
conditions in the homogenization problem are taken in the form of
difference between heat conductivity coefficients of component materials.
To compute the expected values, variances and higher order probabilistic
moments of effective conductivity, Monte-Carlo simulation technique
[10,12] is used consisting of random trials and statistical estimation
procedure. This technique has been used widely in another mechanical and
physical problems including probabilistic —approaches to the
homogenization of elasticity tensor presented in [13,14,22]. As it is known
[18], there are numerous another mathematical and computational ways to
randomize the problems discussed, the stochastic perturbation approach or
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expansion by the use of stochastic polynomials [9], however numerical
implementations seem to be significantly more difficult than for MCS
technique and, moreover, have their well-known limitations on randomness
of input random variables [18]. Considering this fact, the homogenization-
oriented and FEM-based program MCCEFF has been extended to
homogenize the heat conduction problem. Thanks to the numerical
algorithm implemented, probabilistic moments up to the fourth order of the
effective conductivity coefficient are computed for fiber-reinforced
composite. Moreover, the sensitivity of the probabilistic moments with
respect to reinforcement ratio, randomness of composite constituents as
well as for total number of random trials performed (so-called numerical
convergence verification) is verified numerically. Since this fact, that
homogenization is only preprocessor to analyze composite materials some
heat conduction problem defined on the periodicity cell is solved by using
program ABAQUS [1] to verify efectiveness of homogenization procedure.

2. Heat conduction equation
Let us consider a three-dimensional body occupying the region Q in the
steady-state conditions. Let us consider that there is the heat conduction in

our body what means that the Q obeys the Fourier’s law:

1.
g =kx§; g, =k,%

where g, and g, are the heat flows conducted per unit area, 0 is the
temperature of the body, while k,, k, are the thermal conductivities
corresponding to the principal axes x, y. Considering the heat flow
equilibrium in the interior of the body considered, we have:

25020 :

where g is the rate of heat generated per unit area. On the external
boundaries of Q the following conditions are satisfied
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- o . 3.
O, =0 and k= =3

L2

where 6 is the known surface temperature on boundary 0, ky is the

body thermal conductivity, n denotes the coordinate axis in the direction of
the unit normal vector m (pointing outward) to the surface, q is the

prescribed heat flux input on the surface 6Q, of the body and
00, U 8Q, = 8Q and 8Q, N 3Q, = {T} 4.

Introducing the summational convention we have the above equations in
the following form

Z(kie,,.), +g=0 (nosum oni) 5.
i=1,2 )
0=0; xedQ, (essential boundary conditions)
k,0,=7; x€dQ, (natural boundary conditions) 7.

To obtain the variational formulation of the problem considered we
multiply eqn (5) by virtual temperature distribution 80 and integrate over
the whole Q. We arrive at

(Z I(kieli)'idﬂ+é[ngJ 80=0 8.

i=1,2 Q

It should be underlined that arbitrary character of &6 causes that
formulations (5) and (8) are to be equivalent. Further, observing that

pocke, )] =se,(ke, )+ 0o, 9.

and
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2(_6_6_)___59i 10.
OX; :
we obtain
[Goke,)d-Y [s6, ks, dQ+jgaedQ 0 11.
i=1,2 0 i=1,2

what, neglecting the rate of heat generated g (assuming no coupling
between mechanical and thermal effects and steady state conditions) can be
rewritten as

> [60K6,)d2-Y [66,k0,d2=0. 12.

i=,2 O i=1,2 g
Considering the divergence theorem in the form of

> [Gokp,)da=) [80k6,nde)= [86k0,d@Q) 13

i=,2 g i=1,2 a0
we obtain from eqn (12) that
Y 66, k6,d0- jaek LdEQ)=0. 14.
i=1,2

Taking into account the natural boundary condition (7) and the fact that
86 =0 on 0K, we obtain finally

Y [80,k6,d0= jaeqd(aa) 15.

i=1,2 O

This is the principle of virtual temperatures corresponding to the condition
of stationarity of the following functional
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10)=1Y [k6,F a2- [63d(@Q) 16.

what is the basis for finite element formulation of the homogenization
problem.

3. Periodic structure model

The main problem presented in the paper is to find the probabilistic
distribution of the effective heat conduction coefficient for the whole class
of random composite structures which are periodic and made of two
components. For this purpose let us assume that Y is periodic in stochastic
sense if for an additional ® belonging to a suitable probability space there
exists such a translation of Q which covers the whole region occupied by
Y. Since the translation is assumed to be ergodic, thus the ensemble
averaging is equivalent to the spatial one. Next, we assume that the section
Y c R? of this composite with x; = 0 plane is constant along the x, axis.
The section of the composite considered in the direction orthogonal to the
parallel fibers has been shown in Fig. 1.

Let further region Q contains two perfectly bonded, coherent and disjoint
subsets Q, (fiber) and Q, (matrix) and let the scale between respective
geometrical diameters of Q and Y is described by the small parameter £>0.
Let 8Q denotes external boundary of the Q while 9Q;, - the interface
boundary between Q, and Q, regions. Moerover, let ; and Q, contain

transversely isotropic materials for which the heat conduction coefficients
are cut-off Gaussian random variables defined as follows

O<k(x;m)<w 17.
. g k,;xeQ
E[k(x0)]= {kz i x €9, =
Vark 0
COV(ki(X;m)ki(X;m))'—'l: 5 ! Var kz:l 19,

Zeroing of the respective terms of covariance matrix follows the lack of
experimental data describing probabilistic correlation of heat conductivities



Probabilistic effective heat conductivity .................. 181

in fiber and matrix. In the context of definitions (17-19) the periodicity of
the composite structure is equivalent to periodicity of probability density
functions (PDFs) heat conductivity coefficient (or any either physical or
material property). Moreover, taking into account assumption of Gaussian
character of these variables, we obtain as effect periodicity in first two
probabilistic moments of coefficient under considerations. It may be
proved that the periodicity in the context of expected values and variances
is not sensitive to PDFs cutting-off.

4. Homogenization problem formulation

The main purpose of the homogenization procedure is to find the effective
conductivity coefficient k™ characterizing the whole composite and for
which an energy defined by eqn (16) is equal to this obtained for the
composite in primary configuration. To derive kT the following
algorithm is provided:

1. indicating of the Representative Volume Element (RVE) of the
composite structure which has minimal geometric dimensions and due to
some translation can cover the whole space occupied by composite
structure considered. The external shape of the RVE is usually introduced
as rectangle or honeycomb (for 2D analysis) or cube (for 3D case).

2. assuming that the essential and natural boundary conditions on 0Q are
to be periodic, i.e. temperatures are equal on opposite boundaries of
periodicity cell

3. introducing the homogenization function @ which is in fact some special
temperature field and which fulfills the periodicity conditions (values are
equal on the opposite sides of periodicity cell).

Thus, we can rewrite variational formulation (13) for the two-component
composite as follows

5, Jéoxto)aar (oo, )ans
i=12 o

- [s0xP6,d(Q)+ [86k(,d(ER)=0
2,

&

20.
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Since the components of the composite are perfectly bonded
0Q,, = 0Q, = 0Q, is an interface and we obtain

Zj@ek“)e )do+ I@Ok‘”e )da- J'se k" -x@p_d@EQ)=0. 21

i=1 20

which due to the divergence theorem given by eqn (13) can be rewritten as

[ Y| [Gek®e,)dn+ j (o ke, )dQJ [s0 Ik, ,m,a@0).

Ql i=1,2 mxz

where [k] denotes the respective difference of heat conductivities on the
interface 6Q,, .

Next, let us note that the homogenization function @ is so defined that the
eqn (22) takes the form [6,25]

I[Se(ki(l)@ﬂ.)]i dQ + Iﬁe(k§2)q)vi)]a dQ=[86 [ki]nid(aﬂ), 23.

This result follows limiting transition of variational statement of
equilibrium equations for real composite .with € —0 [23] what is
equivalent to decreasing of geometrical dimensions of periodicity cell.

To compute the effective conductivity let us notice that the LHS of the
equation (23) can be jointed to represent an integral over the whole set Q.
To transform the RHS, let us observe that, considering equation (9) we
have

[0 k). = [36, k; dQ + [56 k;;dQ =
' N L 24.

(9]
= [kn;80 dEQ)- [[k; ]n;80 d(eQ)+ [86 k;;dQ
Q Q2 Q

Further
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[k;n;86 d(6Q)=0 25.
on

what follows periodicity condition on 8, and next

[0 k;; d(@Q)=0 26.
Q

what is the result of constant character of the conductivity coefficient k.
Thus we arrive at:

(o ki),idQ= [[ki]n;80 (@) 27.

what included into the eqn (23) gives

28.
Z( [bok,@, ) de = [[sek, J.da.
i=1,2\ O Q
Thus, the effective conductivity can be calculated as [15]
Iki(em dQ = .[ki dQ - .fkid),i dQ 25.
Q Q Q
and taking into account that k{*™) = const we can derive
(eff) _ 1 fr dO—--L (k.®.dQ 30.
k1 I gj;kl dQ Hf{ itk

Finally, introducing k=k;, what follows the isotropic nature of the
composite constituents in the plane considered, we have

k(eﬁ)zﬁlﬂ'z jk(l)@—liq),i)igz 31

a=],2 Q,
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where 1; is the unity matrix. It should be mentioned that all these
transformations are well-known from the homogenization of the elasticity
tensor components. The detailed mathematical considerations on existence
and uniqueness of homogenization function as well as effective
conductivity coefficient can be found in [6,25].

Having computed the expected value of effective heat conductivity
coefficient we can compare its value with so-called upper and lower
bounds in well-known Voigt-Reuss form:

supk=Q"k‘+Qz'k2, 32,
Q
1nfk= Q'kl 'k2 33-
Q, -k, +Q, -k,

Starting from equations (32) and (33) we can evaluate probabilistic
moments of these quantities by the use of probabilistic simulation
technique. Moreover, it can be observed that in the case of randomly
defined conductivity coefficients of composite components, the expected
values and variances of the upper bounds (as well as any moments of
higher order) can be derived by the use of classical probability theory
theorems as follows

E[sup k]= ( )E[k1]+( )E[kz]
Var(sup k)= (%) -Var(k, )+ (-?2—2) 2 -Var(k,)

34.

35.

5. Finite element implementation
Let us assume that region Q is discretized by a set of finite elements and

the scalar temperature field @ is described by the nodal temperatures vector
¥, as, cf. [19,20]:
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O(x;)=H, (x) ¥, ; i=1,2 36.

where N is the total number of degrees of freedom of the region €. It
follows that

@pa=H M 37

The heat conductivity matrix K,, and the vector F, can then be expressed

as follows:
Kgp = [kyH, H, 40 38.
Q
and

P, = [gH,dQ+ faH.d0 39.
Q n

Using equations (38) and (39), the functional (16) can be rewritten in the
following form

L R A R A 40.
The stationarity conditions of n(‘{’u) lead us to the following equations
Kp¥F =P, 41.

Solving this equation for'¥; enables to compute discretized values of the

homogenization function and, finally, the effective thermal conductivity
coefficient given by equation (31). If parameter ‘k’ is taken as Gaussian
random variable and is defined by the expected values vector E[k] and
variances vector Var(k) we may compute the expected values and
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variances of the random temperature field in considered region by the use
of Monte-Carlo simulation technique described below.

6. Probabilistic approach to homogenization

We shall now find out expected values and variances of the effective
conductivity coefficient. To this end we first have to determine the first two
probabilistic moments of the homogenization function. It is known that the
probabilistic moments of the random temperature field can be computed
alternatively by the Monte-Carlo simulation, von Neumann expansion (or
its modern modifications), or stochastic perturbation approaches. Using
statistical techniques we solve a large set of corresponding deterministic
samples with the conductivity coefficients randomly generated [5] in the
whole of the probability space.

Defining appropriate estimators [3] of the effective heat conductivity
coefficient we obtain first expected value of the effective conductivity
coefficient as

42.

M _ M s M ©)
£ k(em]=;’zzk(mxn =) (1) “fa‘Z(klid)-i>n

j=1 j=1 j=1
where M is total number of samples, which should be established taking

into account efficiency of estimators, 0(103), for instance. Then, another
probabilistic characteristics can be computed as follows

e variance and standard deviation

Var k(eﬁ))z,vl__l_i(k(eﬂ')(j)_E[k(cff)]j

j=1

e ordinary moment of the n-th order for the

43.
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M 45,
m )£ 3 (Y
i=1
e central moment of the n-th order estimator

ha P ) m, [P ) m, ()] s6.

e coefficients of variation, assymetry and concentration

(kD 47.

a(k(ﬁf )) [k(efr)

k(e
B(k(ﬁf)) “3§k(eff)g 8

. m (Cf’f)
(k( ff)) c“ gk“‘”% 49.

It is essential to underline that, in the contrary to another probabilistic
approaches, simulation technique assures existence and uniqueness of the
effective conductivity coefficients probabilistic characteristics what follows
deterministic results and the nature of the statistical estimation methods.
Further, it can be seen that the accuracy of the estimation results depend on
the total number of random trials performed denoted in equations posed
above by M while do not depend at all on the imput random variables
coefficients of variance. Finally, it can be underlined that the technique
applied is difficult to apply to large scale systems considering an increase
of simulation time with increasing total number of degrees of freedom and
technical problems caused by data storage.

The flowchart for probabilistic simulation procedure can be presented in
the form of the following algorithm, see Fig. 2 for instance.
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7. Computational experiments

Homogenization computational experiments have been carried out by the
use of the composite-oriented program MCCEFF [14,16]. This program
enables computations of the composite materials effective characteristics
for linear elasticity and thermal problems. Generally, n-phase composite
materials may be homogenized in elasticity problems while at present two-
component for heat comduction, however upper and lower bounds for
effective tensors can be calculated automatically for all cases. Probabilistic
thermal problems can be solved only by the use of simulation method in the
contrary to the effective elasticity tensor computational procedure where
MCS as well as stochastic perturbation methods can be used. Due to the
fact, that the program has its internal automatic mesh generator as well as
many important simulation tools, the homogenization of the composite
media with randomly defined material properties as well as their geometry
will be able in the version of the code.

First, the sensitivity of effective heat conductivity coefficient probabilistic
moments are verified with respect to the composite reinforcement ratio. It
enables to solve the problem how the volume of reinforcement influences
the probabilistic moments of conductivity coefficients.

The results of the computational analyses are shown in Figs. 3-6 presented
above in the function of fiber volume ratio marked on the horizontal axes.
The first figure (Fig. 3) presents the expected values of effective values and
their bounds, next (Fig. 4) shows the standard deviations of these
characteristics. Fig. 5 illustrates the third-order central moment in function
of the fiber volume while in Fig. 6 the fourth-order central probabilistic
moments are presented. Generally, it is visible on all these figures that the
moments of effective conductivity upper and lower bounds bound the
moments of effective heat conductivity coefficient very well. Taking into
account the interrelations between all these probabilstic characteristics, the
approximation of the effective composite conductivity moments by the
respective values of lower bound can be proposed. It is very important
considering the shortening of computations time because lower bounds are
obtained by simple proportions simulation while the effective heat
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conductivity coefficient must be calculated by FEM solution of some heat
conduction boundary value problem. Observing first two figures, it should
be noted that expected values and standard deviations of upper bounds
change linearly while the changes of first two moments of effective
parameter and its lower bounds have quite nonlinear character. Changes in
3th and 4th order probabilistic moments are nonlinear for all effective
characteristics but the differences between values of moments increase
together with increase an order of probabilistic moment being analyzed and
for data collected in Fig. 6 is even more than 10 times between upper and
lower bounds for effective conductivity coefficient. Considering these
interrelations, lower bounds should be used for approximation of the
effective behaviour of the composite when for some reasons it is
impossible to compute effective quantities due to the homogenization
method introduced.

Next, the sensitivity of probabilistic moments the effective conductivity to
components conductivities randomness are verified. It gives us an answer
to the question how the conductivity coefficients randomness influences the
probabilistic moments of conductivity. Numerical results dealing with this
problem are presented in Figs. 7-10 - expected values and coefficient of
variance are marked on the vertical axes while the coefficients of variance
of input coductivities which are equal one another - on the horizontal axes.
Figure 7 presents expected values of upper bounds, next one presents the
expected values of lower bounds for the effective conductivity tensor. The
expected values of effective conductivity coefficient are presented in Fig. 9
while coefficients of variance of the same property are presented in Fig. 10.
Vertical axes of these figures illustrate the respective values of these
moments and the horizontal ones - values of the effective conductivity
coefficient standard deviations of both composite components (‘composite
randomness’). Generally, it is visible that increase of composite
randomness decreases the expected values of effective characteristics and
increases their coefficient of variation. Moreover, it can be noticed that
relations discussed have, neglecting some computational errors, general
linear form similar to changes in input coefficients of randomness for

composite constituents.
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Next, convergence of probabilistic moments of effective conductivity
coefficients has been verified. The main purpose of these experiments was
to establish an optimal number of random trials for probabilistic simulation
that moments computed are obtained with relatively small numerical error.
The results of analysis have been presented in Figs. 11-16. The respective
estimators are marked on the vertical axes of the graphs while the total
number of random trials on the horizontal ones.

First, it should be noted that the convergence of the expected values
estimators have the same character for upper and lower bounds as well as
for effective conductivity coefficient, see Figs. 11, 12 and 13. The value of
estimator decreases rapidly from maximum reached for 10 random trials to
minimum for about 50 iterations. Next, with inverse tendency, increases to
100 trials and asymptotically converges to stable value for about 10°
iterations. The character of coefficient of variance convergence presented
in Fig. 14 is quite similar to the discussed above, however asymptotic
changes are more smoothened than for expected values shown on previous
figures. The coefficient of assymetry (which should be equal to O for
Gaussian deviates) decreases from maximum reached at the 10 iterations to
the value equal to O for 10* samples with any asymptotic fluctuations
(observed for effective elasticity tensor components estimators). The fourth
order probabilistic characteristics in the form of coefficient of
concentration (which should be equal to 3 for Gaussian random variables)
converges analogically as first and second order characteristics to 3 for 10°
random iterations in simulation. It should be noted that however the
probabilistic parameters are equal to those characteristic for Gaussian
random variables, we cannot identify the character of effective heat
conductivity coefficient probability density function as Gaussian.

Finally, let us note that the homogenization procedure is only some kind of
preprocessing tool to computational analysis of the composite materials.
Considering this fact and having computed expected values of effective
conductivity coefficient, the last group of computational tests has been
devoted to verification of some heat conductivity problem for fiber
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reinforced composite (Fig. 17) where the condcutivity coefficients have
been taken as follows:

- upper bound of effective conductivity coefficient (see Fig. 18 for results),
- effective conductivity coefficient (Fig. 19, as previously),

- real composite structure (Fig. 20, as previously),

- lower bound of effective conductivity coefficient (Fig. 21, as previously).
These tests worked out by the use of program ABAQUS [1] enable to
verify which of temperature fields for different homogenization techniques
is the nearest to the field obtained for composite in real configuration. This
is important considering the differences between computations of upper
and lower bounds and the direct homogenization of the composite.

Figures 18-21 present only a half of the periodicity cell due to the vertical
symmetry of resulted field with respect to the horizontal axes provided in
the half of cell height. Observing resulting fields it is characteristic that
temperatures for different ways homogenized composite have uniform
distribution in the periodicity cell while isotherms as well as temperature
gradients are concentrated in matrix region. Moreover, it is visible that the
maximal temperature obtained on the right edge of the cell for the
composite with conductivity coefficient equal to the effective value is the
nearest to the solution for composite in its real configuration. The
difference in this temperature for real and effective configuration is about
10% of the value examined. Moreover, as it was expected, the minimal
edge temperature is obtained for the model with lower bound of heat
conductivity while the maximum is reached for upper bound on this
parameter. While the difference between lower bound and effective
conductivity is smaller than between homogenized parameter and upper
one, the temperature field for composite with upper bound on effective
coefficient better approximate effective behaviour of the composite than
the lower bound.

8. Concluding remarks
1. The formulation presented and discussed above describes a new

homogenization method for the two-component composite materials with
random thermal conductivity. The proposed model enables one to compute



192 Marcin Kamibski

expected values and variances of the effective conductivity by using Monte
Carlo simulation based on the finite element method (FEM). Numerical
implementations which seem to be effective and easy to provide appear to
be efficient tools in studying stochastic sensitivity of effective conductivity
to the probabilistic moments of composite component conductivities. At
the same time it should be noted that Monte-Carlo simulation technique,
applied in the program MCCEFF used in the paper, can be successfully
incorporated in any commercial FEM (ABAQUS, for instance) or another
discrete method based packages.
2. Computational experiments performed show that all probabilistic
moments of k€™ are well bounded by the moments of their upper and lower
bounds sup(k) and inf(k). Moreover, it can be seen that lower bound
expected values and variances are quite effective approximation of
effective conductivity moments what can be useful in computational
modeling of nonperiodic composites. Taking into account simulation-based
character of the randomization method, the most recommended number of
random trials has been verified as about 10°. Considering the fact that
homogenization presented is, in fact, equivalent to the solution of some
boundary value problem, this conclusion deals as well with any Monte-
o simulated heat conduction problems with heat conductivity
~nefficients treated as random. To have a good comparison with another
probabilistic approaches to the homogenization, an approach based on the
stochastic finite element method (SFEM) is recommended which has been
used to stochastic modelling of transient heat transfer in [11]. We may
expect, as for effective elasticity tensor probabilistic moments [17], that the
expected values for the probabilistic model will be smaller than those
obtained by SFEM approach and the relation for the variances (or
coefficients of variances) will have the inverse character.
3. The probabilistic homogenization procedure invotved may be applied for
seepage, torsion, irrotational and imcompressible flow, film lubrication,
acoustic vibration as well as for electric conduction, electrostatic field,
electromagnetic waves and all field problems with stochastically defined
material or physical characteristics. To use the results presented in the
paper to probabilistic homogenization of another engineering field
problems, the well-known analogies [2] may be used successfully to
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transform probabilistic moments computed for heat conductivity coefficient
to describe different physical field parameters, cf. seepage permeability,
shear modulus, electrostatic permittivity or electric conductivity.

4. Starting from the homogenization procedure proposed, the sensitivity of
the k®? probabilistic moments to components conductivities expectations
interrelation may be verified in further computational tests. Moreover,
probabilistic (homogenization-based) reliability of the composite structures
with parameter sensitivity studies (probabilistic characteristics of material
parameters) may be provided. On the other hand, it is easy to extend the
model proposed to that applicable for n-component random composites as
well as for multicomponent media with stochastic structural defects in
analogy to carried out in [16].

5. Finally, it can be posed that it seems to be intutionally sensible that
randomness in geometry should be equivalent in some sense and under
some special assumptions to the randomness in material parameters.
However, it must be proved mathematically (or verified numerically) how
to replace probabilistic moments of reinforcement shape, random
coordinates of fiber center in periodicity cell or even random number of
fibers in RVE in the context of expectations or variances of material and
physical properties. Neglecting this remark, the next step in extension of
stochasticity in composite materials and homogenization procedures is to
randomize microgeometry of periodicity cell together with heat
conductivity coefficient or elasticity tensor components.
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FIGURE CAPTIONS

Fig. 1. Periodic fiber reinforced composite

Fig. 2. The flowchart of the probabilistic simulation algorithm

Fig. 3. Expected values of effective conductivity coefficient

Fig. 4. Standard deviations of effective conductivity coefficient

Fig. 5. Third order central probabilistic moments of effective conductivity
coefficient

Fig. 6. Fourth order central probabilistic moments of effective conductivity
coefficient

Fig. 7. Expected values of effective concuctivity coefficients upper bounds
Fig. 8. Expected values of effective conductivity coefficients lower bounds
Fig. 9. Expected values of effective conductivity coefficients

Fig. 10. Coefficients of variance of effective conductivity coefficients

Fig. 11. Convergence of expected value of effective conductivity
coefficient upper bound estimator Fig. 12. Convergence of expected value
of effective conductivity coefficient estimator

Fig. 13. Convergence of expected value of effective conductivity
coefficient lower bound estimator

Fig. 14. Convergence of variance coefficient of effective conductivity
coefficient estimator

Fig. 15. Convergence of assymetry coefficient of effective conductivity
coefficient estimator

Fig. 16. Convergence of concentration coefficient effective conductivity
coefficient estimator

Fig. 17. Heat conduction for the composite homogenized

Fig. 18. Temperature field for upper bound of effective conductivity
coefficient

Fig. 19. Temperature field for effective conductivity coefficient

Fig. 20. Temperature field for real composite structure

Fig. 21. Temperature field for lower bound of effective conductivity
coefficient
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Generation of the heat conductivity coefficients probability space
for i=1,..,M do
randomizek

Sequential calculations of bounds for effective conductivity coefficient
for =1,...,.M do ’

Ql 'k1+Qz'k2 g

Q-k,-k
supk= S ; inf k N

"0k +Q, K

enddo

Sequential solving of the linear equations system
for i=1,...M do o
: K'¥ =P,

enddo

Calculation of random realizations of effective conductivity coefficient
for i=1,..M do

(ef) = L —L [k1,®; dQ
K =gy [k dQ- g [k 1@,

enddo

Statistical estimation of the results
for i=1,...M do
equations (38)-(45)

enddo

Fig. 2,
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VALUE
+1.25E-3¢6
+4.11E~01 AA@US
+3.21E-01
+1.23E+00

+1.64E400
+2.05E+00

+2. 488400
+2.87E+00
+3.2%E+00
+3.70E+00

+4.11E+00
+4.52E+00
+4.93E400

+5.34E+00

VALUE
+1.25E-36
+3.02E-01
+6.03E-01
+5,05E-01
+1.21E+00
+1.51E+00

ot +1.,81E+00
%@éﬁ
+2.11E+00

+2.41E+00

+2.71E+00
+3.02E+00
+3.32E+00
+3.62E+00

+3.92E+400
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VALUE

+8.90E-37

+3.47E-01%

+6.93E-01

+1.04E+00

+1.35E+00

+1.73E400

+2.08E+00
= +2.43E+00
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+3.47E+00
+3.81E+00
+4,16E+00
+4.51E+00

VALUE

+1.25E-36

+3.74E-02

+1.95E-01

+2.32E-01

+3.30E~01

+4.87E-01

+5,84E~-01

+6.82E-01

= +7.7%E~C1
+8.77E-01
+9.74E-01
+1.07E+00
+1.17E+0¢
+1.27E+00
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