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Abstract

The problem of global and local stability in the elasto-plastic
range for thin-walled columns is examined on the basis of the
incremental theory of plasticity using Hill’s Yield Criterion. Columns
of closed and open cross-sections built from rectangular orthotropic
plates are subjected to the axial compression. A solution of elastic
buckling for a thin-walled orthotropic columns based on Koiter's
asymptotic method is employed to investigate the elasto-plastic
buckling mode of the column and to determine its buckling load. The
study is based on the numerical method of the transition matrix. The
results of numerical calculations are presented in diagrams.

Notation

E., E, ,Eo4s - Young’s moduli in principal (x,y) and 45 degrees directions of
orthotropy,

Vi » Vyz - Poissons’ ratios in principal (x,y) directions,

Gxy - shear modulus,

EF, EP ,Eq - hardening moduli in principal (x,y) and 45 degrees
directions of orthotropy,

G, - hardening modulus in shear,

G10 , 020 , Oso - proportional limits in principal (x,y) and 45 degrees
directions of orthotropy,

T120 - proportional limit in pure shear,

- effective stress,

' oy, Oy - normal stresses,
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Txy - Shear stress,
o - uniaxial stress,
o, - buckling stress,
h - thickness of a component plate,
[ - length of a column,
m - number of axial half-waves,
M, , M,, My, - bending moment resultants for a component plate,
N - force ﬁeld
N:, N,, Ny, - in plane stress resultants of a component plate,
U- displacement field,
u, v,w, - displacement components of middle surface of a component plate,
€ - uniaxial strain,
€,,Y, - membrane strains in a component plate,
K,.K,.K,, - bending strains in a component plate,
4 load parameter,
E., E,’ ,G, vy - instantaneous conventional parameters of orthotropy.

1. INTRODUCTION

The aim of this work is to analyse the stability loss of thin-walled
orthotropic beam-columns in the range of stresses lying between the
proportional limit and the yield limit of a material.

In last years the behaviour of thin-walled elements for which the
buckling stress and the yield limit are of the same range is of special
importance in the design of machines and many industrial structures.

In numerous studies (e.g. [6], [16], [17]) dealing with elasto-plastic
stability of thin-walled structures the isotropy of material in the elastic and
inelastic range has been usually assumed. Meanwhile it is well known that
many structural materials traditionally considered as isotropic exhibit some
degree of anisotropy due to working processes. Also the increased interest in
composite materials by the industry demands a better understanding of the
strengths of these materials anisotropic by design.

In the present paper the problem of stability in the elasto-plastic
range of thin-walled columns is examined using the method elaborated for
the analysis of stability of thin-walled orthotropic beam-columns [10], [11].
The relationships between the stresses and strains for a component elasto-
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plastic plate are derived on the basis of the incremental theory of plasticity
[4]. On the other hand the same relationships are written for an orthotropic
elastic plate. Comparing the appropriate coefficients in both relations the
instantaneous conventional parameters of , elastic orthotropy” can be found
out. So the problem of inelastic stability of columns can be investigated in
the same way as the problem of stability of the elastic orthotropic columns.

It should be noted that in one of previous papers [12] the authors
applied this method to solve the problem of inelastic stability of isotropic
columns made from the material that uniaxial stress-strain curve was
described analytically by Needlemann-Tvergaard relation or Ramsberg-
Osgood formula.

2. FORMULATION OF A PROBLEM

The long thin-walled prismatic columns of length / and composed
of plane, rectangular plate segments interconnected along longitudinal
edges are considered.

The columns of open and closed cross-sections (Fig.1), simply supported at
the ends, subject to the uniform compression.

It is assumed that a component plate is orthotropic in such a way that
principal axes of orthotropy (x,y) are parallel to its edges.
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Fig.1. Considered cross-sections (dimensions in mm)
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3. CONSTITUTIVE RELATIONS IN THE ELASTO-PLASTIC
RANGE

GA

E =tga,; Ey= tgoy
P_ p -l P
E,=tga_ EP=tga,

Fig. 2 Material stress-strain characteristics

As it is well known for orthotropic materials there are four independent
elastic constants (Ey, Ey, Gy, Vyx) to be found for each component plate.

In the elasto-plastic range the behaviour of an orthotropic material is
fully described (in plane stress case) by four independent characteristics [7].
Three of them correspond to the uniaxial stress-strain curves for principal
and 45 degrees directions of the strength plane of the material. The fourth
characteristic corresponds to the pure shear test.

In this work the material stress-strain characteristics linear in the elastic
range and with linear hardening are taken into account during analysis
(Fig.2).

Further it is assumed that orthotropic material obeys Hill's Yield
Criterion that for a plane stress state can be written as [7], [8] :

I

o P Pt
6 =ao; +a@0, -a10,0, +3asT,, (1)
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In this expression the parameters a; + a3 are called anisotropic parameters

which depend on the material constants in particular directions.
The initial parameters 3@;( + a3 depend only on the proportional limits.

51o=53/0%o 520=C—fg/62, 53o=5(2>/(3ff20), 533o=53/02,
when 6 =45 (2)

ajo =4ajp +ax + 3330 —4a330.

For stress-strain hardening material the uniaxial elasto-plastic
stresses vary with increasing plastic deformations and therefore the
anisotropic parameters should also vary since they are functions of current
stresses. The anisotropic parameters @; +a; depend on constants of the

material characteristic and also on the current stress (for more details see [14

D:

=2 =2
- G
oy E,EP E -EP[_2 ] ;
G — 0y + Gy
E,~Ef EE’
= oo y s . 3)
e E,E} E -EP( - ’
Eq-Ef EEP
=2 =2
- c o
asz =

= —= - - _
e 3 GuGxy E - % o2-od|+37}
Go-GE E EP 0 120

512 = 51 +;2 +3§3 —4533 for 6 =45°.
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where: E, E?, oy - Young’s modulus, hardening modulus and proportional
limit for a characteristic of reference.

When the characteristic in the longitudinal direction (direction of
loading) is chosen as a characteristic of reference than a;=a;;=1.

For small elasto-plastic strains it is assumed that they don’t depend
on the history of deformation [4]. Therefore the relations between
infinitesimal increments of membrane sectional forces and strains according
to the incremental theory of plasticity take a form (4), where Sy (i,j=x,y)
denotes deviatoric stress for orthotropic material and A is a scalar positively
defined [14 ].

k. h

= (—1'——;72—)[88x + VT]SE}, = A(sz = Vnsyy)]s
Eyh
6Ny = m[&s}, + V68x = A(Syy + VSXX)], 4)
SN‘W = Gh(S‘yxy —ASxy);
where:
E

n= E_i; V= Vyxo

Thp -
S, = -3—(2alcx —2120y),

s i
Syy = §(2a20'y —a)20y),
Si=daz

On the other hand the variations of sectional forces can be written as

follows:
SNX = h.[AnSEx + A1268y],

6Ny = h[Alzssx +A2268y], (5)
SNW = hA338'ny.
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When the uniaxial state of loading is considered
(o =0, Gy =Ty =0; o =a8,0), the parameters A;; + A3; and A can be
easily determined as functions of elastic constants of orthotropy and current
parameters of anisotropy a; + a3 (see [14]):

3 [a- = "
- EEZa, - vna))de, +(2vna; - nalz)Say]

(23, - vriay)° , . (2a; —vmap, )(2va; -3;,)

Ap/C=1- Ay ; Ap/C=vn- e :
Azz/C=n-n2%$'—2£; A33/C=G—(1E:i"3; ©)
E
e
gp E
where:  Ag =4(1- V') = _I;:;; 3 +48] —4vnag@y, + a),. @

4. BASIC EQUATIONS FOR ORTHOTROPIC ELASTIC COLUMNS

Let’s now consider basic relationships for an elastic orthotropic plate.
For a component plate exact geometrical relationships between strains and
displacements are taken into account in aim to consider both out-of-plane
and in-plane bending of a plate [10], [11]:
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Ex =uy + 05(u’2x + v,zx +w?x);

e 2 2 23
Ey =V, + O.S(u,y +Vy + w’y), (8)
Yay SUy +V +ULU L +V Vo +W WS
Kx =—w’xx; ](y :—W,yy; ny =—W’xy;

Physical relationships for a component plate treated as an orthotropic
with principal axes of orthotropy parallel to its edges are formulated in the
following way:

Ny = h(K; g4 +Kyzey);

Ny = h(Kjpe, +Kpey); )
ny = hK33Y Xy"*
where:
Kn=Es/(1- nyvyx); Ky = Ey Il= nyvyx);
Ki2 = vy Kj = vyKp; K33 =G
and

h3
M, = Esks 4 VyxEyKy)
1211 = VxyVyx }
h3
M, = ————) Vi ExKy + EyKy) (10)
12{1 = vy Vyx

GH
= K

My = T

The dependence in Young’s moduli and Poisson’s ratios in (9) and (10) is as
follows:
N=Ex /Ey = vy /vy (11)
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The differential equilibrium equations resulting from the Principle of
Virtual Work for the component plate can be written in a form:

J{Nx,x Ny + (o) +(uy) + Q\Ixyu’x)’y +@qu, )X]Buds )
{ x +Ny +(N v ) Nyv’y),y +®XYV,X)J +@WV’Y)X}VdS= 0
iMsxx +Myy +2My +€\wa,x)( '*'@yw,y) +®xyw,x2 "'@cyw,y)}“cs =0 (12)

The solution of these equations for each plate should satisfy
kinematic and static conditions at the junctions of adjacent plates (that are
given in [13]) and following boundary conditions at the ends of the column
(corresponding to the free support):

Ny(x=0;Ly)=Ny,  v(x=0;Ly)=0,

(13)
W(x = O,I,y) = O, M,xx(x = 0; I’Y) =0.

5. SOLUTION OF THE PROBLEM

The method of solution is based on the fact that the relationships
between stresses and strains in the elasto-plastic and elastic range for the
orthotropic plate have the identical form (5), (9):

Elasto-plastic range Elastic range

N, =h*[Aj*e, +App*ey], N, =h*(Ky;*ey +Kjp*ey);

Ny =h*[A12*8x +A72*8y], Ny =h*(K12*€x +K22*8y); (14)
ny =h*A33*’ny. ny=h*K33*'ny.

So, the coefficients 4;; -43; can be replaced by coefficients K;; -K3.
In other words equating K;; =A;;, etc. the instantaneous conventional
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*®
parameters of orthotropy E;, E;,, G, Vy can be found out as functions

of parameters describing the elasto-plastic behaviour of a material.
Therefore the method for the elastic orthotropic columns can be applied to
calculate, for the assumed number of half-waves m, the buckling load value
of a given column in the elasto-plastic range.

Now, we have the elastic problem that is solved by the asymptotic
Koiter’s method [9]. Displacement U and sectional force N fields are
expanded in power series in the buckling mode amplitude ¢ , (€ is the

amplitude of buckling mode divided by the thickness of the first component
plate).

U=mT0 +xTO 4
SR 10 (15)
N=amNO 4 N0 4

where: U@, N _ prebuckling fields,
UD, NO - buckling modes fields.

By substituting the expansion (15) into equations of equilibrium
(12), junction conditions and boundary conditions, the boundary value
problems of zero and first order can be obtained. The zero approximation
describes the prebuckling state while the first order approximation that is
the linear problem of stability is reduced to a system of homogenous
differential equations with respect to displacements. This system with
appropriate junction conditions is solved by modified transition matrices
method [20]. The numerical integration of the equilibrium equations in a
transverse direction with respect to the orthogonalization method by
Godunov [1] is used. Finally the relation between state vectors on two
longitudinal edges is obtained. In the solution and in the computer program
Byskov-Hutchinson [2] asymptotic expansion is employed.

The solution of the first order approximation enables to determine
the buckling loads of global and local value and the buckling modes. It
should be mentioned that this approach enables to find out all buckling
~modes and their combinations (e.g. ,,mixed modes” [3], [5]) and to include
the shear lag phenomenon and the effect of cross-sectional distortions.
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The problem is solved in a numerical way. For a given geometrical
parameters, material constants and for the assumed number of half-waves
the elastic buckling stress for the considered orthotropic structure is
calculated. If this value is greater than the proportional limit in the
longitudinal direction oo , the value of a stress ¢ is found out for a
considered value of uniaxial strain € and next corresponding to it
conventional ,,parameters of orthotropy” are also found. Applying these
parameters in the elastic solution for elastic orthotropic plates a new value
of the buckling stress is calculated. Further a method of secants is used to
obtain the value of buckling elasto-plastic stress with accuracy 0.05%.

The proposed method allows to consider the transition of buckling
mode together with the increase of loading as distinct from the usual
assumption that the elasto-plastic buckling mode is analogical to the elastic
one [6], [14], [16].

6. RESULTS OF NUMERICAL CALCULATIONS

Thin walled prismatic columns of open and closed cross-sections
shown in Fig.1 are considered. The dimensions are chosen in such a way
that the buckling occurs in the elasto-plastic range.

The results of calculations are presented in diagrams showing the
dimensionless buckling stress o =0/ Gy as a function of axial half waves
m.

Because rather long columns are considered (in case of open cross-
section /= 200 mm and for columns of closed cross-section /=441 mm) the
global buckling occurs for m=1 and local buckling for m>1 .
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Fig. 3a. Influence of values of elastic modulus E, on the dimensionless buckling
stress
(other material constants unchanged)
The material properties are taken from the works of Owen and
Figueiros[18], [19] and in the case of the isotropic material are as follows:

E,= E¢ = E,= 30000 MPa; G=10000 MPa; Vxy=Vyx=0,3;
E.P= E,? =E¢"=3000 MPa; - G =1000 MPa;
010=020 =0g0=30 MPa; T12=17,32 MPa;

During the numerical analysis the influence of changes of elastic
moduli and hardening moduli in principal directions of orthotropy (while the
others parameters remain unchanged) on the buckling stress values and also
on the buckling mode is investigated.

For open cross-sections the results obtained under the assumption of
symmetry conditions along the cross-section symmetry axis are shown by
full lines and the results obtained under the assumption of antisymmetry
conditions along the cross-section symmetry axis by dotted lines.
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Fig. 3 b. Influence of values of elastic modulus E, on the dimensionless buckling
stress
(other material constants unchanged)

Change of the elastic modulus Ey (in the direction perpendicular to the
direction of loading) does not cause the change in global buckling stress
value that is of antisymmetrical mode (Fig.3a). The significant influence is
observed on the values of local buckling stress (symmetrical mode) - it can
be noted that number of half-waves m corresponding to the minimum also
changes (m=2 in case ,,a” and m=3 in case ,,b” ).

It is rather surprising that the influence of values of elastic modulus
Ex (in the direction of loading) is less significant (Fig.3b).



222 Katarzyna Kowal-Michalska, et al

g*

2.3

22

2.1 A

5 /o

19 VA

1.8 g1 LK =T

1.7 - i

1.6 +—H\L

15 20 \!‘ /W

. ) o / P

1.4

* 7

1.3

1.2 +F

1.1 AL Nt

1

0.9 4
1. 23 . 4 & 6 7 8 8 10 .
—O—isotr-sym —8—Db-sym —&—a-sym
— 11— isotr-antisym — -A— b-antisym — @— a-antisym

isotr - E\’=E,”; a-E/S=2E.; b-E/=0,5E.";

Fig. 4a. Dimensionless buckling stress versus number of axial half-waves for
different values of hardening moduli E,” (other material constants unchanged)

Analysing the influence of changes of hardening moduli that
describe material characteristics slopes in the inelastic range the opposite
phenomenon is observed.

Change of the values of hardening modulus E,’ (in the direction
perpendicular to the direction of loading) practically does not affect the
values of global and local stress (Fig.4a), while the change of values of
plastic modulus E,? (in the direction of loading) has the significant influence
on values of global and local buckling stresses (Fig.4b).



Global and local inelastic buckling .................. 223

O*
2.2
29 Lk -

g = X

24— Kl 'T//'
1.9 i . sl( .';I l /EJ

: K/"\x—x;(
i A .
e
A

1.5 o
1.4 Z AL S
1.3 \ \>/ } . A’ y:
1.2 ",\ A /_ . .’ /
bl I "l B
u' Lo ol
L I
1 2 9 4 -9 @ .7 & 8 10 m
—O—isotr-sym - - & - -isotr-antisym —a&—b-sym
—X—C-sym --#& --b-antisym  -- X --c-antisym

isotr - E,;”=E,”; b-E/=05E,’; c¢-E,"=2E";

Fig. 4b. Dimensionless buckling stress versus number of axial half-waves for
different values of hardening moduli E,P (other material constants unchanged)

For columns of closed cross-section the similar analysis has been
conducted. In this case only the results corresponding to the symmetry
conditions along the cross-section symmetry axis are shown because the
values of global flexural-torsional buckling stress (antisymmetrical) are
much greater than flexural ones what is caused by a large torsional rigidity
of a closed section.
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The curves presenting buckling stress versus number of half-waves m
has only one minimum when m>10 - corresponding to the local plate mode.
When number of half-waves m=2,3 the calculated values of a buckling
stress lie rather high - above the value of the material yield limit. Because
the yield limit is the greatest value that the buckling stress can achieve, these
results have no physical meaning and are not shown in diagrams.

The different values of elastic moduli does not affect the global buckling
stress but the change of elastic modulus E, in the direction perpendicular to
the direction of loading has a significant influence on the values of local
buckling stress and number of half-waves m corresponding to the minimum

(Fig.5).
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The change of values of hardening modulus in the direction of loading
has the significant influence on values of global buckling stress and rather

small on local buckling (Fig.6).
In Figure 7 the buckling stresses for three values of proportional limit in

the direction of loading are presented. For ¢,0=20 MPa and 30 MPa the
minimum of local buckling stress occurs when number of half waves m=17
and lies above the appropriate proportional limit, while for ©,,=45 MPa
minimum of local buckling stress occurs when number of half waves m=12
and is equal to 38 MPa so lies in the elastic range.

a)
elasto-plastic
elastic

.........

b)

elasto-plastic

elastic

Fig.8. Shapes of global buckling modes
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In Fig.8 the shapes of global buckling modes (the material constants
as for results shown in Fig.4b curve a, m=1) are presented when
antisymmetry (Fig.8a) or symmetry conditions (Fig.8b) are imposed along
the cross-section symmetry axis. In the case of a column with open cross-
section the minimum value of global buckling stress corresponds to the
antisymmetry conditions and in the elasto-plastic range the buckling mode is
pure flexural-torsional, while in the elastic range the corresponding mode is
flexural-distorsional one (“mixed mode” [3], [5]). When the symmetry
conditions are imposed the buckling modes in the elastic and elasto-plastic
range are flexural ones.

elastic

elasto-plastic

Fig.9 Shapes of local buckling mode



Global and local inelastic buckling .................. 229

[IP%2)

The shapes of local buckling modes that corresponds to the case “a
shown in Fig.4b (number of half-waves m=2) are presented in Fig.9. It can
be seen that both modes (elastic and elasto-plastic) correspond to the
“mixed” modes — local buckling plate mode with distortional one.

FINAL REMARKS

The results of numerical analysis show that:

a) in the case when the material is orthotropic in the elastic range (Ex# E,,
E"= E,f) only the value of the elastic modulus E, (in the direction
perpendicular to the direction of loading) has the strong influence on the
local buckling stress both for columns of open and closed cross-section,

b) in the case when the material is orthotropic in the plastic range (Ex= E,,
E’# E,’) only the value of hardening modulus E,” (in the direction of
loading) affect in the significant way the values of local and global
buckling stress and also the buckling modes.

It should be noted that the buckling modes in the elastic and plastic
range do not always cover up. Therefore the usual assumption, made in
many works, that the buckling modes in the elastic and elasto-plastic range
are identical can not be true in some cases.

The advantage of the presented method is that it allows to find out all
possible buckling modes (global and local, symmetrical and
antisymmetrical) and also to investigate “mixed modes” occurring in
columns of open cross-sections.
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