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Abstract

A method of the stability analysis of critical points of
dynamical systems, based on equations of the so-called potential
energy of perturbations, has been proposed. This method has been
called the method of potential energy perturbation analysis. Its
essence consists in formulation of relations and an analysis of changes
in the potential energy of a perturbation of any number of generalised
co-ordinates of the dynamical system. An example of the application
of this method to analyse the stability in vicinities of characteristic
points of a sample dynamical system in the form of a robot
manipulator has been also shown.

Introduction

Studying the literature devoted to the subject matter, one
should notice that the most often used method of analysis of
dynamical system behaviour in vicinities of critical points is the
methods based on the analysis of eigenvalues [3, 7], the Lyapunov
exponents [2, 3]. The mathematical-numerical method which consists
in the analysis of changes in generalised co-ordinate perturbations of
the dynamical system as time functions, phase diagrams, Poincaré
maps performed for subsequent generalised co-ordinates as a function
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of one or more motion perturbations of the system can also be
employed [8]. The method of eigenvalues makes it possible to
describe generally and qualitatively dynamical properties of the
system in the neighbourhood of a selected critical point. The method
proposed in the present paper allows one not only to answer the
question concerning the type of the dynamical system critical point,
but to perform any quantitative analyses of the dynamical system
behaviour in the vicinity of a given critical point with regard to the
number, magnitude, and character of the motion perturbation. The
method consists in formulation of relations describing the potential
energy, called the potential energy of dynamical system perturbations,
and in the analysis of this energy changes in the neighbourhood of the
system critical point, on the basis of which it is possible to determine
qualitatively and quantitatively a character of the system motion.

The paper consists of four parts. In the first part, general
assumptions of the proposed method of potential energy perturbation
investigations are presented. Mathematical relations used for the
stability analysis and determination of types of critical points of a
sample dynamical system are presented in the second part. A MAR
robot manipulator has been assumed as an example of the mechanical
system. The third section includes some sample results of numerical
simulations and the conclusions drawn from these numerical
simulations. The fourth section is devoted to a comparison of
advantages and disadvantages of the proposed method with the
methods applied so far and it presents some general remarks.

Theoretical introduction

Let us assume that a vector of spatial generalised co-ordinates
of the dynamical system (for instance, of the robot manipulator)
assumes the following form:

—q_=[q1’q2!"':qi""’qn]r (1)

where:
i - ‘i’-th generalised co-ordinate of the dynamical system;
n - number of generalised co-ordinates of the dynamical system.



Method of the analysis of variations... ... ... ...... ... 235

Let us now introduce a perturbation of the '/-th generalised co-
ordinate in the form:

=9+t 2
where:
geM
M- set of perturbed generalised co-ordinates of the dynamical

system;
@i -  perturbation of the 'I-th generalised co-ordinate of the

dynamical system.

Let us assume that the relation expressing the potential energy
- of the nominal dynamical system motion as a function of its vector of
generalised co-ordinates is known. The dynamical system potential
‘energy, taking into account the effect of a perturbation of selected
generalised co-ordinates, has been expressed as follows:

where:

A-  potential energy terms dependent on the location of the
nominal dynamical system in the system state space (e.g. on
the configuration of a robot in its operating space) and the data
concerning the mass and geometry of the system structure.
Here the potential energy terms describing the nominal motion
of the dynamical system are included;

Z(@;) - terms of the potential energy equation expressing the
dynamical system motion perturbations (e.g. the industrial
robot motion perturbations).

In general, the potential energy of the dynamical system is
expressed as:

E,= E; + E, 4)
where:

E," - potential energy of the nominal motion of the dynamical system;
Ep' - potential energy of the nominal motion perturbation.
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As a result of the assumption of the analysis of the system
dynamics in the close vicinity of the manipulator equilibrium points,
the trigonometric functions of the system potential energy have been
replaced by a Taylor series. The obtained relations represent changes
of the potential energy of the dynamical system perturbation in
vicinities of individual configurations in the system state space as a
function of the perturbation magnitude of individual generalised co-
ordinates and critical point parameters in the space of motion
parameters of the dynamical system.

In order to carry out an analysis of the system dynamics in
neighbourhoods of critical points, the stability criteria based on the
following cases:

for E; =0 => a lack of perturbations, i.e. the perturbation

potential energy equals to zero;
for E,>0 => an increase in the system potential energy

resulting from the occurrence of motion
perturbations; the equilibrium point is stable;

for E, <0 => a loss of the robot potential energy resulting

form the occurrence of perturbations, the
equilibrium point is unstable;
have been given. '

As a result of numerical simulations, one can perform an analysis
of changes in the potential energy with respect to the perturbation
location of subsequent generalised co-ordinates of the dynamical
system as a function of the perturbation magnitude and for the case
when: |
- perturbations of a selected generalised co-ordinate of the

dynamical system under consideration occur;

- perturbations of a higher number or of all generalised co-ordinates
of the system under consideration occur.

As a result, some information on types and characters of
individual critical points of the dynamical system analysed can be for
instance obtained.

In the next section an example of the application of the method for
an analysis of types of characteristic points of a sample robot
manipulator has been presented.
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Analysis of characteristic points of a sample robot manipulator

Let us consider a robot manipulator with three degrees of
freedom as an example. A scheme of such a manipulator is shown in
Fig. 1. It is a four-link manipulator with the following kinematic chain
structure: R-R-P (R - rotational kinematic pair, P - prismatic kinematic
pair).

Csf O
0o Zq

Fig. 1. Scheme of the robot manipulator MAR. Choice of local
co-ordinate systems by Denavit-Hartenberg notation. The
potential energy is described with reference to plain YoZo.

Now let us consider a relation describing the manipulator
potential energy in the second stage of the motion (the motion of the
second and third generalised co-ordinate, whereas the first co-ordinate

remains stationary).
Let us introduce perturbations of the co-ordinates g; and g3 in

the following form:

9, = 4, * ¢, ) g5:= 4% @ 3)

We obtain then the relation describing the manipulator potential
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energy, in the second stage of the motion, in the form:

Epz = A + Z (¢21¢3) (6)

where:

A- terms of the potential energy equation describing the basic
(nominal) motion; factors depending on the robot
configuration and on the mass and geometrical data of its
links; in the case under consideration:

1 1
A= e g 5 4+ — s . COS +
[ > mo* Lo 5 m;- Li (q,) . %

+my-L;-cos(q,) + ms-L;-cos(q,)]-g

L: - length of the ‘i’-th manipulator link;

m; - mass of the ‘/’-th manipulator link;
g - acceleration of gravity.
Z- terms of the potential energy equation describing the

manipulator motion perturbation,
or transforming equation (6):

E,2 = A + B-cos(q2+¢2)+

: ; (8)
+ C-sin(q, + @,) + D-g,-sin(g, + ®,)
where:
1
B = (Emz + m3j.L2.g.Cos(ql)

C = ms(s;+ q;)-8g-cos(q,) 9

D = m;-g-cos(q,)
s; - initial position of the centre of gravity for link 3, with

regard to position of point C.
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Thus, after the motion perturbation occurs, we can express the
manipulator potential energy as a sum of the manipulator nominal
motion potential energy and of the potential energy, called the
potential energy of the manipulator motion perturbation, i.e., generally
in the form:

E,2 = Ep2 + Ep (10)

After some mathematical transformations and taking into
account the close vicinity of manipulator equilibrium points, the
trigonometric functions ‘sin(¢z)’ and ‘cos(¢;)’ have been replaced by
a Taylor series and the series terms higher than four have been
rejected. Then, on the basis of Eq. (10), the potential energy of the
system perturbations is equal to:

o 9
Ep2 = -[ B-cos(gq,) + C-sin(qz)]-(—z—z - 2—;) +

2 3
- [ B:sin(q,) - C-cos(qy) - D-%-cos(q:)l'[% -5 g_oJ i

2 4

$ @, @)

+ D-o,- g ] - == 4+ —=
@;-sin(q,) [ 2 24)

(11

If we assume the values of the parameters of individual
equilibrium points, then on the basis of Eq. (9), we obtain the values
of the coefficients B, C, D of Eq. (11) in the neighbourhood of
manipulator individual equilibrium points.

A collection of the obtained results has been presented in
Table 1.
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Table 1
Manipulator | Parameters of critical Coefficient Coefficient Coefficient
configuration | point in kinematic pairs B & D
- ql . 0
High q:=0 (12*my+m3)*L,*g 0 my*g
g3 = -53
- QI - O
ngh g:=T (10"‘m2+m3)*L2’“g 0 m;*g
g3 = -S3
q=n
Low g:= 0 -(1/2"‘m2+m3)*L2*g 0 -mj*g
q3 = -53
Q="
Low g@;=7 -(12%ma+m3)*Ly*g 0 -ms*g
q3= =53

Employing the data included in Table 1, Eq. (11) assumes the

form:

* —
EpZ =

1 : 5
-..__.B. 5 +
0 sin(q,) ¢,

1 s 1 A
+og Dcos(;:) 93 @y + S Dosin(q;) @5 +

-—I—-B-cos
24

1 : .
- E-B-cos(qz)-(oz - B-sin(q,)-@; +'D-sin(qg, )-p, +

1 I a2,
- E-D-cos(qz)-coi-% - E'D'Sm(qZ)'¢§'¢73 +

+ D-cos(q,) ¢, 9,

5 1
(q,) 93 + g-B-Sln(qz)-¢§ +

(12)

Equation (12) allows for an analysis of changes of the
manipulator perturbation potential energy as a function of the
perturbation magnitude of individual degrees of freedom. We can
distinguish here the cases mentioned in the section entitled Theoretical
Introduction.

In the case of a high configuration of the manipulator and at
the generalised co-ordinate g, = 0, as well as in the case of a low
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configuration of the manipulator and at the generalised co-ordinate
g2 = n, Eq.(12) assumes the form:

. 1 1 1
)
1
.g-D.¢;.¢3+D-¢2.¢3

In the case of a high configuration of the manipulator and at
the generalised co-ordinate g2 = m, as well as in the case of a low
configuration of the manipulator and at the generalised co-ordinate
g2 =0, Eq. (12) assumes, in turn, the form:

. 1 1 1
EpZ = -—.B.¢: + _.B¢§ - _—.D¢‘;¢3 +

24 2 120 (14)

/
i ED¢§¢3 -D-9p,-9;

Examples of numerical analysis results

Analysing Figs. 2, 3, 4, 5, one can observe the changes in the
potential energy of the manipulator location perturbation as a function
of the perturbation magnitude and the case when:

- a perturbation of one of the generalised co-ordinates of the
manipulator under consideration occurs; in this case it is the
generalised co-ordinate g, Figs. 2, 3;

-0.01 -0.005 o 0.005 0.01
]

)]

-0.0004 J
-0.0008 A
-0.0012 +

-0.0018 A

poerturbation potential energy E .’

-0.002 -
perturbation ¢, [rad]

Fig. 2. Perturbation potential energy distribution in case of unstable point.
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Fig. 3. Perturbation potential energy distribution in case of stable point.

- perturbations of a higher number of generalised co-ordinates
occur; in the case considered these are the generahsed co-ordinates
g. and g3, Figs. 4, 5.
In Figs. (4) and (5) a distribution of the perturbation potential
energy as a function of the two-dimensional perturbation ¢, and ¢; for
selected cases of equilibrium points has been presented.
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Fig. 4. Perturbation potential energy space distribution in case of unstable
point.
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Fig. 5. Perturbation potential energy space distribution in case of stable
point.

The perturbations of the location of the manipulator links in
the following ranges:

@, = = 0.0] rad : @, = = 0.0005 rad (15)

have been introduced into the system under analysis.

Taking into account the stability criteria mentioned in the
Theoretical Introduction, the types of individual critical points of the
manipulator under consideration have been determined in Table 2.

Table 2
Perturbation potential - .
energy distribution IOt Grtticd pen
Figure 2 Unstable point (anti-attractor)
Figure 3 Stable point (attractor)
Figure 4 Unstable point (anti-attractor)
Figure 5 Stable point (attractor)
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The notion of an attractor is understood as the effect of
"attraction” of the trajectory of the perturbation potential energy
changes by the critical point, whereas the notion of an anti-attractor
refers to the property of the critical point consisting in "repulsion” of
the trajectory of the manipulator perturbation potential energy
changes.

The analysis of Egs. (13) and (14) and of Figs. (4) and (5)
allows one to observe that in the case the critical point value
perturbation of the second generalised co-ordinate lacks, the critical
point value perturbation of the manipulator third co-ordinate does not
affect the magnitude of the perturbation potential energy of the robot
under consideration. Thus, one can state that the behaviour of the
system in the neighbourhood of the critical point is influenced by the
perturbation of the manipulator generalised co-ordinate ga.

In Figs. 2 and 3 a character of the potential energy distribution
of the manipulator perturbation for the case of a zero perturbation of
the manipulator third generalised co-ordinate in vicinities of various
types of critical points, in the second stage of the robot motion has
been presented. The figures confirm the obtained results referring to
types of the manipulator individual critical points determined by the
method of eigenvalues and by the motion perturbation method (3, 7].

Physical and geometrical data of the analysed manipulator are
included in Table 3.

Table 3
Manipulator link number i
1 2 3
Kind of kinematic pair: R —rotational | R-rotational | P — prismatic

Link mass m; [kg] 12.7 12.7 15

Link length L; [m] 0.17 0.18 042
Position of the xsi (ml s = .
centre of gravity | y'. [m] 0 0 0

zsi [m] g e st

S;=0.18m
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Conclusions

The presented method for the stability analysis of the
dynamical system in vicinities of critical points allows for a
qualitative and quantitative evaluation of the system behaviour. The
method allows one to answer the question how the system will behave
when it is out of the equilibrium position and how the vibration will
change in the vicinity of the equilibrium point, for instance as a
function of time.

The forms and kinds of critical points are closely related to the
manipulator model which has been assumed. One should observe the
qualitative differences in the behaviour of the dynamical system in the
neighbourhood of individual critical points, depending on the robot
mathematical model assumed. In the case of ideal manipulators, the
characteristic type of critical points is a centre or an unsteady saddle-
type attractor, whereas with manipulators with damping in kinematic
pairs, a node-type and a focus-type attractor or a saddle-type anti-
attractor occurs. The consistency of the types of individual critical
points obtained with the method of eigenvalues and the method of
motion perturbations have been found. Similar properties of the
system under analysis in the vicinity of individual critical points are
shown by means of the method of potential energy variations of the
manipulator configuration perturbation, proposed in the present paper.

Additionally, the proposed method of perturbation potential
energy variations allows one to answer the question concerning the
qualitative character of the dynamical system behaviour (in the
neighbourhood of the equilibrium point), when this system is out of
the equilibrium position, as a function of the perturbation of one or
more degrees of freedom.

The proposed method allows for an analysis of the dynamical
system behaviour in real time of its motion. The method makes it
possible to simulate the system behaviour for different cases of
dynamical system motion perturbations. It can be applied for
determination of motion control algorithms of subsequent generalised
co-ordinates of the dynamical system in order to maintain the
conditions of its stability.
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