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Abstract

A dynamical behaviour of the linear oscillator with one degree of freedom is
presented. During a motion excited by an external harmonic force the oscillator impacts
on the basement. A physical and mathematical model of the system, as well as
bifurcation diagrams showing an effect of the excitation frequency on the character of
the system motion have been discussed. Results of the analysis of an influence of the
viscous damping coefficient on regularity of the oscillator motion have also been
presented. The investigations have been conducted by means of numerical simulations.

Introduction

Mechanical systems whose elements impact on one another during operation have
been extensively investigated by researchers. The reason of this interest lies in the fact
that impacts occur very often in many modern technical devices. The phenomenon of
impact is either desirable, being the basis of their operation, as in e.g. pneumatic
hammers, impact print hammers [10] and heat exchangers [3, 1], or is destructive and
should be eliminated, as in e.g. gear-boxes [5].

Early studies of impact oscillators, carried out by Peterka {7, 8}, comprised some
numerical investigations. More recent studies were initiated by Shaw and Holmes [9]
and Foale and Bishop [2]. In their works, tools of modern nonlinear dynamics have also
been applied. One of fundamental works devoted to the dynamical behaviour of a one-
degree-of-freedom oscillator with impacts is the study by Nordmark [6], in which a
survey of modern methods used for modelling systems with impacts and analysis of
their motion, a grazing incidence as a reason of a nonperiodic motion in an impact
oscillator, effects of a low velocity impact, and also a comparison between numerical
and experimental results have been presented.
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Dynamics of oscillators with impacts has also been

e studied by Hinrichs, Oestreick and Popp [4]. They have

presented a comparison of the results of experimental

k ’:_ c investigations with the results of numerical simulations
1

concerning the mathematical model in which the Newton's
law has been employed to describe impacts, and they have
also presented a method for determination of the
Lyapunov exponent in nonsmooth systems.
m, = The investigations presented below have been devoted
to analysis of vibrations of a linear oscillator with one
degree of freedom. These vibrations have been caused by
< an external harmonic exciting force and impacts of the
oscillator on the basement.
A special attention has been pald to determination of
Figure 1. Oscillator in static effects of the exciting force frequency and the viscous
equilibrium position. damping coefficient on regularity of the system motion.
The investigations have been carried out by means of numerical simulations of the
motion of the mathematical model of the system. Owing to advantageous results of the
comparison shown in [4], the effect of impact has been modelied using the Newton’s
law.

F, sin w,t
1

7777 7

Mathematical Model of the System

The sustem under considerations is the linear oscillator with one-degree-of-freedom,
presented in Figure 1. When there is no contact between the oscillator and the
basement, the motion of the system is described by the well known equation:
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where m, is the mass of the oscillator, c, - coefficient of viscous dampmg, k, - stiffness
coefficient of massless spring, F, - amplitude of forcing, and o, - frequency of forcing.
Dividing equation (1) by k, and by the static deflection x,=F/k,, and introducing the
normalized time

t=at, where a’=—, 2

we obtain equation (1) in the form
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Symbol y, denotes the relation between the actual damping and the critical one. In
many cases it is more easy to give a value of the logarythmic decrement of damping 4,
(equal to a natural logarythm of a relation of two subsequent amplitudes of free
vibrations). The relationship between v, and 4, is as follows:

8y
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Equations describing the impact, based on the well known Newton’s law base are as
follows:

/ /
dx dx dx dx
”’1(‘_1] _ml_}_ = 8§, [_‘) 2 o ek (6)
dt

and after dividing by m, o, may be writter in the dimensionless form

= §, & =k, (7)

Additionally 6 is the distance between the base and the colliding surface of the
oscillator (delated to x,g). .
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Figure 2. Resonance diagram of the oscillator, y,=0.1.

Influence of the Exciting Force on the Dynamical Behaviour of the System

The object under investigation is an oscillator to which a harmonic force with the
amplitude ¢, = 1.0 m corresponding to the stiffness coefficient k, has been applied. The
static equilibrium position is determined by the parameter 6 = 0.01 m. The restitution
coefficient £, = 0.9.

Figure 2 shows a resonance diagram plotted for the system under consideration with
the damping coefficient assumed to be y, = 0.1 (with respect to the critical damping).
The dimensionless frequency 1, of the exciting force is presented on the horizontal
axis, whereas the vibration amplitudes determined as system deflections at the instants
when the system velocity equals zero are shown on the vertical axis.

As can be easily observed, the system under analysis is characterised by occurrence
of superharmonical resonances in the neighbourhood of 1, =2, 4, 6, .... . In the vicinity
of these values of 7, the system motion is regular, and the vibration amplitudes reach
local extreme values.

Figure 3a shows a time diagram of the system motion for 1, = 2.5. Additionally, a
qualitative time history of the exciting force (upper, sinusoidal line) has been plotted
on this diagram. As can be seen, the system motion is regular with period 1: one motion
cycle occurs per one period of the exciting force. In the neighbourhood of remaining
superresonance frequencies, the system motion is regular as well, with period 2 (1, =
4) and 3 (1), = 6), respectively, which means that one motion cycle occurs per two or
three periods of the exciting force. The confirmation of this observation is to be found
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Figure 3. Time diagram of the motion, y,=0.1.
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Figure 4. Bifurcation diagram of the oscillator, y,=0.1.

in Fig. 4 which is a classical bifurcation diagram: displacements of the system at the
instants distant from each other by one period of the exciting force are presented on the
vertical axis. On this diagram, one can see one (period one, 1, = 2), two (period two,
M, = 4) or three (period three, n, = 6) lines, respectively, in the vicinity of
superharmonic resonances.

As has been shown in Figs. 2 and 4, the second characteristic feature of the system
under analysis is occurrence of regions of a chaotic motion when the exciting force
frequency is close to 3 and 5.

The reason underlying occurrence of a chaotic motion in these regions is easy to
understand if one observes the time diagram plotted for n, = 2.7 (Fig. 5). As can be
seen, at distances equal to 3 periods of the exciting force, the exciting force acting
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upwards (and thus impeding the system)
- reduces the oscillator velocity to the value
n,=2.7 | equal to almost zero (or exactly equal to
zero) just before impact, and then it “holds”
= the oscillator in the neighbourhood of the
basement. As a result of such behaviour of
the exciting force, an impact does not occur
B ! . 1 915 = : = ! ; (') ] 4 i at all or a few impacts with small velocities
’ ) N take place (grazing effect), which causes
irregular (chaotic) behaviour of the system.
This character of the motion is confirmed
by the phase portrait and Poincare map shown in Fig. 6. The transition from a regular
motion (in the vicinity of n, = 2, 4, 6) into an irregular one (in the neighbourhood of
1, =3, 5) is accompanied by the phenomenon of period doubling, which can be seen
on the time diagram presented for n, = 2.65 in Fig. 3b.

Figure 7 depicts a resonance diagram of the system (analogue to that shown in Fig.
2) in the range 0.2 < 1), < 1.2, Nonsmoothness on the plots of amplitudes observed on
this diagram is caused by a change in the “rhythm” of the system operation, resulting
from a change in the exciting force frequency. For instance, for ;= 0.3, a period of the
exciting force is long enough for the oscillator to come into a continuous contact with
the basement after a sequence of impacts occurring one after another (time diagram in
Fig. 8a). At higher values of 7, one can observe 5 impacts (1, = 0.45, Fig. 8b), 4
impacts (1, = 0.5, Fig. 8c), 3 impacts (1, = 0.6, Fig. 8d), etc., up to 1 impact (n, = 1.05,
Fig. 8¢) during one period of the exciting force. For n, = 1.5, (Fig. 8f) the vibration
characteristic curve is already similar to that observed for the first superharmonic
resonance (Fig. 3).
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Figure 5. Time diagram of the motion, y,=0.1.

a) b)

o1

& = n,=2.7

L3l

Figure 6. Phase plane and Poincare map, 1,=2.75, v,=0.1.
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Figure 7. Resonance diagram of the oscillator, y,=0.1.

Influence of the Damping Coefficient on the System Behaviour

Figures 9, 2 and 10 show the resonance diagrams for various values of the damping
coefficient y,. As can be seen, an increase in the damping coefficient is followed by
disappearance of regions of a chaotic motion in the subresonance range (7, < 1). This
phenomenon can be observed in Fig. 11 showing the bifurcation diagram plotted for
1,= 0.6, on the assumption that the damping coefficient vy, is the bifurcation parameter.
A chaotic motion changes into a regular one for y, > 0.06, whereas for y, > 0.4 a
periodic continuous contact of the oscillator with the basement is observed.

A comparison of Figs. 9, 2 and 10 points out that regions of a chaotic motion

occurring in the neighbourhood of the exciting force frequency 1, ~ 3 and n = 5
disappear for high values of the damping coefficient as well.
On the other hand, however, an increase in the damping coefficient leads to a decrease
in the amplitude of free vibrations initiated by impacts. When this amplitude is close
to the amplitude of the vibrations excited by the harmonic exciting force, additional
impacts in superharmonic resonance regions occur. A regular motion observed here so
far changes into a chaotic one, owing to the grazing effect: cf. an example presented
in Fig. 12 for y,=0.6 and n, = 5.9.
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Figure 8. Time diagrams of the motion, y,=0.1.

Conclusions

The results of numerical investigations show that a motion of the oscillator impacting
on the basement can be either regular or chaotic, depending on the exciting force
frequency. The basic, largest regions of a regular motion are observed for the frequency
of the exciting force close to even multiples of the free vibration frequency, whereas
the regions of a chaotic motion occur at the exciting force frequency close odd
multiples. The regions of a chaotic motion are reduced, or even disappear due to an
increase in the value of the damping coefficient.
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Figure 9. Resonance diagram of the oscillator, ¥,=0.05.
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Figure 10. Resonance diagram of the oscillator, y,=0.6.
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Figure 13. Poincare map, n,=6, y,=0.6.
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