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Abstract

In this paper the technique of the dynamic stability analysis proposed for the conven-
tional laminated structures is extended to the structures rotating with the time-dependent
angular velocity. The rotating angle-ply symmetrically laminated circular cylindrical shell
is treated as a beam-like structure. The shaft is subjected to a constant torque. The ve-
locity stochastic component is assumed in the form of the wide - band Gaussian processes
modelled as a Wiener process. The fluctuating component of angular velocity implies
a stochastic parametric excitation of shaft motion. The structure buckles dynamically
when the axial parametric excitation becomes so large that the structure does not os-
cillate about the unperturbed state, and a new increasing mode of oscillations occurs.
The uniform stochastic stability criteria involving a damping coefficient, a rotation speed
and geometrical and material parameters are derived using Liapunov’s direct method.
Formulas determining dynamic stability regions are written explicitly.

Introduction

The dynamic stability of isotropic elastic shafts has been studied for several years (cf.
Bishop [3], Tylikowski [13]). The increased use of advanced composite materials in vari-
ous applications has caused a great research effort in the structural dynamic and acoustic
analysis of composite materials. Latest works in this area have been shown that the
dynamic stability regions are highly sensitive to structural parameters. The dynamics
of laminated composiyes has been object of considerable attention over the past quarter
of the century. The first analysis of the stability of simply supported laminated shafts
rotating with a constant speed is due to the present author [12]. Using the perturba-
tion technique Kammer and Schlack [6] investigated the effect of time-dependent angular
velocity on the vibration of a rotating beam. Natsiavas [8] analysed nonlinear dynamic
response of circular rings rotating with spin speed which involves small fluctuations from
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a constant average value. The uniform stability of laminated shaft modelled as composite
shells rotating with a constant angular velocity under the combined axisymmetric loading
was investigated by Tylikowski [16]. Recently, composite materials find an increased range
of applications for high-performance rotating shafts (e.g., see Napershin and Klimov [9],
and Bauchau [2]). Thin-walled standard angle-ply laminated tubes meet relatively easy
the requirements of torsional strength and stiffness but are more flexible to bending and
have specific elastic and damping properties which depend on the system geometry, phys-
ical properties of plies, and on the laminate arrangement. Such systems are also sensitive
to a lateral buckling. The Shape Memory Alloy (SMA) hybrid composites are a class of
materials capable of changing both their stiffnesses through the application of in-plane
loads and their elastic properties. The stiffness modification occurs as a result of the ther-
mally induced martensite phase transformation of the SMA fibers which are embedded
in standard laminated composite structures. The Young’s modulus of the nitinol (Nickel-
titanium alloys), which is an example of such a material increases 3 to 4 times when the-
temperature changes from that below M; (i.e., in the martensite phase) to that above
Aj (i.e., in the austenite phase). The damping of vibrations in the SMA due to internal
friction exhibits also an important characteristics. The low-temperature martensic phase
is characterised by a large damping coefficient while the high-temperature austenic phase
shows a low damping coefficient. The decrease ratio is approximately equal to 1 : 10.
Comprehensive studies of eigen-frequencies and eigen-functions of the SMA hybrid adap-
tive panels with uniformly and piecewise distributed actuation have been presented in
papers (1], and [10].

One of the first important studies applying the direct Liapunov technique to was a rotat-
ing shaft stability analysis {15] in which the closed form analytical criteria were derived.
The dynamic stability criterion of rotating composite shafts subjected to a plain axial
force was reduced to an effective algebraic inequality [12].

This work investigates a dynamic stability of thin-walled shafts rotating with angular
velocity which involves fluctuations from a constant average value. The time-dependent
spin speed variations introduce new terms to dynamic equations and lead to the para-
metric excitation. In order to analyse behaviour of solutions of dynamic equations we
introduce a measure of distance, || . ||, of the solution of dynamics equations with nontriv-
ial initial conditions from the trivial solution. Using the appropriate energy-like Liapunov
functional, the sufficient stability conditions for the uniform stability of the shaft equilib-
rium are derived. In our dynamics study the rotating angle-ply symmetrically laminated
circular cylindrical shell will be treated as a beam-like structure. The reduction is jus-
tified by a symmetric plies arrangement and negligible circumferrential stresses in the
shaft (see [2]). Despite the fact that in case of viscoelastic orthotropic plies the result-
ing constitutive equation is of higher order, the simple Voigt-Kelvin model is assumed.
The stochastic parametric excitation is assumed to be a wide-band Gaussian process.
Thus, it can be written in terms of the Wiener process and dynamics of shaft have to
be understood in the stochastic sense. The dynamic equations are rewritten in as Ito
differential equations in a suitable Hilbert space. The shaft is subjected to the torque
destabilizing the rectilinear shape of the shaft, and implies a noncirculatory problem [18].
The increase of constant angular velocity component leads to buckling while the increase
of time-dependent component results in the growing parametric vibration. The direct
Liapunov method is used to analyse the uniform stochastic stability of the equilibrium
state. Since the dynamic equations are strongly nonlinear, special attention is paid to



Stability of a shaft rotating with fluctuating angular velocity 95

a positive-definiteness of the appropriate energy-like Liapunov functional. Analysing the
local positive-definiteness and the supermartingale property leads to sufficient stability
conditions, expressed in terms of the rotation speed, the damping coefficients, the bending
stiffness and the torque characteristics.

Constitutive equation

Let us consider a geometrically perfect ylindrical shell of radius R and total thickness .
Due to the symmetry assumption equations relating inplane moments and force resultants
with the strain state components decouple and we can write the equation of symmetrically
laminated tube in the form+ (as the coupling stiffness matrix B is equal to zero)

Ny Ay A A €11
Ny | = | Az A Ass €22 (1)
Ni2 Ae Az Aes €12

where ¢;; and A;; denote strains and inplane laminate stiffness matrix, respectively.

If the shaft consists of a large number of orthotropic layers the A and Az are negligible
and the matrix equation (2) decouples. As the circumferential force N,y is much smaller
than the the axial one, we can omit Ny, in the second equation of (2) and calculate the
reduced Young modulus of the beam-like cylindrical shell

Eo = Qu — Q,/Qa2, (2)

where the transformed in-plane stiffnesses Q;; are expressed by the orthotropic lamina
invariants U; in the following way Q11 = Uy + Uz cos 20+ Us cos 48, Q22 = Uy — Uz cos 20+
Uscos48, Q3 = Uy — Uscos4d. The invariants can be calculated using the in-plane
sttiffnesses ();; and the lamination angle 8 [5].

Using the engineering constants Eiq, Eg3, G12,112 we can express the in-plane stiffnesses
as follows

Qu = En/(1 — vnizvm), Q22 = QuEn/En, (3)
@12 = Q22112, Qes = Gra.

Analysing the viscoelastic behaviour of laminate Young’s moduli and the stiffnesses are
the operators Q7; = Q};(s) and the reduced operator Young modulus and the engineering
constants have the following form

E* = Q;l - Q:z/@h (4)
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E3, = En(1+ Bus), E3, = Ey(1 + B22s), Gi; = Gia(1 + Bizs).  (5)

where according to [11] the different engineering constants Ey;, Ep;, Giz have different
viscoelastic properties described Bi1, P2z, Pra, respectively.

By analogy we can write the reduced in-plane stiffnesses in the form of operators
Q:j = _fj + Q:"jsa . (6)

where ij and Q}’j are given as follows
Q= En, Q% =En, Q%= =G, @ =pFuFn, Qi =0nExn, Q4= F2Gr.

Finally the constitutive equation in the first order approach has the form

o = Eo(e + Bré), (7)

where Eo = Qil = (Qiz)z/Q;r B = ( —‘1!1 —'2’2 + ng@ﬁ - QQ§2Q;’2)/(Q~§1Q§2 - (Qh)z)-
Equations of motion

The shaft transverse displacements in the movable rotating with the angular velocity w
coordinate system (y, z) are denoted by u, v, respectively. The absolute acceleration is
equal to the sum of the acceleration of transportation, the Coriolis acceleration and the
relative acceleration, therefore its components are as follows

ay = urr —w’u + 2wu T + €v (8)

a, =vgr — W —2wur — €u (9)

Taking into account the internal and the external damping equations of motion of the
center shaft line in the movable coordinates (u, v) have the form

pAa, + EJuxxxx + aEJurxxxx + be(ur + Q)+ Myvxxx =0 (10)
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pAa. + EJvxxxx + aEJvrxxxx + be(vr — Qu) + Muxxx =0 (11)

X € (0,4

where p is the averaged density of the shaft, b, is the external damping coefficient, and
M, represents the constant torque, which can destabilize the smooth rotation motion.

Introducing the dimensionless coordinates

X = L:II, T = ktt
where

b.k
b= D2 Amoh, A=

the dynamics equations can be written as

dw
yie w = Nk, B

Uy — wiu + 2wv,t +_ €V + €U zpzr t+ Au,tmu + ﬁ(u,t + wv) + Lv,x:cx =0 (12)

Vg — W — 2wU ; — €U + €V zppg + A gzppe + BV —wt) = Lt gz, =0 z € (0,1) (13)

where w = w, + Aw, €= 5’%‘1 and w, is constant. The shaft is assumed to be
simply supported at both ends. It means that the displacements of the shaft in supporting

bearings are small as compared with the displacements of thin-walled flexible shaft.

The shaft is assumed to be simply supported at its ends. As the torque M, are acting
at the shaft ends it is necessary to remind relations between the torque and bending
moments. When the torque is pure tangential to the deformed shaft axis in supports

the bending moments vanish [18]. It means that the transverse displacements and the
bending moments are equal to zero

u(0,t) = u(£,t) = v(0,t) = v({,t) =0 (14)
U zz(0,8) = uze(€,t) = v24(0,1) = vgz(£, 1) =0 (15)

The linear equations (4) and (5) have the trivial solution (equilibrium state) u = v = 0.
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We assume that the stochastic component of angular velocity Aw has the mean value
equal to zero and the time-dependent wide-band Gaussian part with the intensity ¢ ex-
pressed as the formal time-derivative of the Wiener process W,

dw
w(t) = w, + s——

i (16)

We also neglect the last terms of accelerations y and a, in formulae (8) and (9) in
comparison with the others [17]. The dynamic equations (23) and (24) can be rewritten
in the It6 form

du = wu.dt (1)
du; = {wiu—2wov — €U zorz — Mzsoot — Bt + wWov) + Lvgez } dt +
+6(2wou — 2v, — Bo)dW (18)
dv = wv.dt (19)
dv, = {wlv+ 2wl — €V zzs — AV grpat — BV — wott) — Lt zpp } dt +
+¢(2wov + 2uy — Bu)dW (20)

As we would like to interpret the the white noise process as a limit case of Gaussian wide-
band differentiable processes the stochastic differential equations have to be modified [ ]
adding the Wong-Stratonovich correction terms

du = wu,.dt (21)
duy = {wlt— 2wV — €U szrr — Azgzzt — B(Ug + wWov) + L0 gor +
—¢2(2wov + 2u, + Bu)} dt + ¢(2w,u — 2v,; — fv)dW (22)
dv = v,dt ' ' (23)
dvy = {W2v+ 2Wok s — €V zpor — AV gzgzt — BV — wWott) — Lt grr +
+ X (2wou — 2vy — Pv) } dt + ¢(2wov + 2u; — Bu)dW (24)

Uniform stochastic stability analysis

In order to investigate the stability of trivial solution u = v = 0 corresponding to the
smooth shaft motion it is necessary to introduce a precise stability definition. The trivial
solution is uniformly stochastically stable if the following logic sentence is true

A AV (000,01 < 7= Plswpllu( ) o(, 8 2 ) <8

e06>07r>0
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where ||u(.,t),v(.,t)|| denotes a measure of distance of solutions with nontrivial initial
conditions from the trivial one.

We choose the Liapunov functional in the positive energy-like form [16]

1 £
V= §/ {(U,: + wov)2 + (uye + wov + fv+ /\u,zzzr)z + (ve — wou)2+
(4]

+ (v — wot + BV + Migzas)” + 2¢(ul, + 02, }da: (25)

Therefore -
llu, vf| = V*/2 (26)

In order to calculate the differential dV along the trajectory of Eqs. (21)-(24) we use
the appropriate generalized It6 lemma (4]

¢
dv = / {(u,z + wov) (du e + wodv) + (vt — wou) (dvy — wodu)+
0

+(ug + wov + BV + M zzgs) (duy + wodv + Bdv + AdU zraz )+
—+—(v,t —wou+ fv+ Av,",,,) (dv‘t — wodu + Bdv + /\dv,u,,) + 2e (u,ndu,u + v,mdv,n)+

+ 62 [(2wou — 20 — V) + (2wov + 2u; — Bu)?] dt}da: (27)

Eliminating du, dv, du,, dv; by means of Eqgs. (21-(24) and integrating by parts
with respect to z we rewrite the differential of Liapunov functional in the form

14 '3
dv = - / Fdzdt + / GdzdW (28)
0 0

where

F = B(u + ) + Bwl(u? + v7) + 28w, (vuy — uvy) + (€8 — BX — Wl (u, + v%,) +
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+e/\( LTI +v r:v:cz) + /\( zzt + v.z:zt) + 2A(u.zz‘tu zz + V2tV zz:) Lﬂ u zzxzV — U :c:czu)+
+ 2L(u,tv,zzz - U,tu,xzz) + 2Lwo (uv,zzz - vu,z‘rz) = +LA(u.zz:a:xU.rzr == U,zxzxu,:t:x:z:) (29)

G = s[(2wou — 20 — Bv)(2uy + 2wov + Bt + AU zprz)+
+ (2wov + 2u; — Bu)(20, — 2,0 + B+ A gz (30)

Integrating Equation (28) from ¢ = s to 75(t), where 75(¢) is the first random time of a
trajectory exit from the domain V'/2 = §, conditionally averaging (£) we have

EV(r5(t)) = V(s) = & / o / l]-'(t)dt (31)

Neglecting the first four positive terms of integrand and using the elementary inequalities
for arbitrary £, n, ¢, ¥ € (0,1)

tab = +nab/p < %‘(azn2 + 8 /9%)
we calculate the lowerbound of the function F.

1 2
F 2 [w:ﬂ - 5172,33 - Wl - %] (‘u2 + vz) + [eB - /\wg . Aﬁcz} (u?” + v'zu)+

2[1 1 1 A 2

2
ﬂf’ Ry ﬂ ﬂ(g + W] (u,z::z + v,za:rz) + 6)\(1 - %) (u?zzra: + v?z'zz:r) (32)

Using the supermartingale property and proceeding similarly to the proof of Chebyshev’s
inequality we find that the trivial solution of Egs. (21)-(24) is uniformly stochastically
stable if the functional F is positive-definite. It is equivalent to the following algebraic
inequality

{[e,\(1——2);—j—L2(ﬂfz+ﬁ1 ﬂlgz 2':#2)] —efl — I} +<(Aﬂ—<)};:

Hi
20 (33)

o
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The critical angular velocity can be obtained maximizing thfe left side of the inequality
(33) over admissible &, 7, ¢ and ¢ As example we find the maxn.na.l value of. mean _a.ngula.r
velocity for n = ¢ = % = 1 It is easy to notice that the suboptimal value is obtained for
£ minimalizing the following expression

1 =8 wp
) = L’Bp% tla

The minimalizing value of parameter £ is equal to

1x8r2
g=—5 (34)

%%L‘l + wo\/E

Therefore the stability domain as function of fluctuating angular velocity characteristics
1s defined as follows

1 a1 8 Ay « g
{397 -2 (5 a5+ 2:) | mep -2+ 08~} g =5+ 1 25) 20 35)

Taking into account the Brazier ovalization effect [15] we notice that the functional (25)
is locally positive definite. Therofore, increasing of £ enlarges the stability domain in
system parameter space but decreases the stability domain in the state space described
by the norm |.|l. It means that the region of initial disturbances (initial conditions)
described by the norm becomes smaller. The increase of noise intensity ¢ decreases the
admissible rotation speed w,.

Conclusions

A technique has been presented for the analysis the dynamic stability of a shaft rotating
with nonconstant angular velocity and subjected to a constant torque. The dynamic
stability and the stochastic stability problem is reduced to the problem of the positive
definiteness of the auxiliary functional. The explicit criterium derived in the paper defines
the stability region in the form of algebraic inequality. The boundary of the parametric
resonance instability is defined by the geometrical and material properties, the lamination
angle, as well as the constant value and intensity of the fluctuating angular velocity. The
results indicate that the decrease of the angular velocity intensity increases the admissible
constant component of the rotation speed.
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