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Abstract

An intrusive analogy is developed between two subjects of considerable applied importance
in civil engineering namely buckling instability of the Euler elastica and critical mass for
neutrons diffusion.

Introduction

Vibrational resonance as well as elastic buckling of engineering structures are fairly
developed and well understood subjects within applied mechanics [1]. It is therefore quite
useful to establish and discuss some analogies which do exist between this field and another
seemingly very remote field related to determining the critcal mass of certain active materials
which is required for a sustained fission in a thermal or fast neutrons diffusion. To develop
such an analogy between two problems which are considerable applied importance in
engineering and applied physics is the aim of the present note.

L. Part One — Axial load

I. The elastica

Determining the so called buckling loads of thinwaled elastic structures which may become
unstable under the action of external or axial pressure is a very important theoretical problem
with numerious applications in science and technology [1]. In particular, the so called Euler
elastica was used entensively in illustrating fundamental aspects of Poincare and Hopf symmetry
breaking bifurcation, Rene Thom’s classification theorem of elementary catastrophes and more
recently spacial, purely statical, deterministic chaos [1-3].
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The exact nonlinear differential equation of the Euler elastica is easily derived and may be
written in terms of the rotation angle @(x) or the lateral deflection w(x) as [1]

¢"+sing=0, (1a)
or '
o
'(T_—mz)T*'lza):O, (lb)

respectively where: 4 =+/P/EI, P is the axial compression force, EI is the bending stiffness,
()=d( )/dx and x is the axial coordinate. Confining our investigation to determining the
eigenvalue critical load of Eqs. (1 ) and (1 b), we are permitted to linearize and find that

¢ +2¢=0, ‘ (2a)
0"+ ﬂ.’w =0. (2b)

Assuming the boundary conditions to be that of a simple support [1], the eigenvector of the
above equation is easily found from solving Eq.(2a) to be

. i

@w=asin—x, ©)
where a = w(x = //2), i is the wave number and / is the length of the elastica. The associated
eigenvalue is easily determined from inserting Eq.(3) into Eq.(2a)

5 2 x )
a(flz) sin %x—al’ sin %x =0. 4

The eigenvalue critical load is thus

P i
AB=—c= 5
¢ EI' P )

The smallest eigenvalue is obviously associated with i =1 which gives the well known Euler
buckling load [1]

EIx®
R== ©)
of a simply supported strut.

Needless to mention that different boundary conditions give different buckling loads and
buckling forms, i.e. eigenvectors as discussed in great detail in [1].
Next we look at the analogous problem of determining the critical mass of neutrons diffusion.

2. The diffusion of neutrons

It is well known that neutrons diffusion in fissile material is governed by a so called
Helmbholtz partial differential equation [4]. It is further noted that it is immaterial whether we
seek a solution for neutrons density N = N(xz) or neutrons flux ¢ = ¢ (xt) where ¢ is the time
because both of the two differential equations have the same mathematical form namely
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1 6N

—V-—67=(VZI—Z‘,)N+DV2N (7a)
, and

1% (5 _ 2

= vz, -Z. p+DV, (7b)

respectively. Here % and X, are the macroscopic cross-sections of the active material for fission
and absorbtion, respectively. vis the number of neutrons released at each fission, V is the average
velocity of the neutrons and V 2=V#*V is the Laplacion operator [4-6]. The last two equations
(Egs. (7a) and (7b)) cannot be compared to those of the elastica (2) because they are partial
differential equations dependent on space (x) and time (#) while the elastica is governed by an
ordinary time independent differential equation.

It must therefore be regarded as a rather fortunate situation that Eqs. (7a) and (7b) turned out to
be stationary for the physically most important case namely the so called criticality condition.
This critical state is vital for the practical situation of designing a self sustained fission reaction
for extracting energy. For self sustained fission our equation must be stationary, that means time
independent. Physically this would mean that a state is maintained where neutrons production is
exactly balanced by neutron losses due to leakage and absorbtion. Mathematically however our
equations become ordinary differential equations which have the same form as (2). In fact in the
one-dimensional case, they are identical to the elastica eigenvalue equation. The diffusion
equation may be then written as [4-6]

A -3,
v N(x)={v—fT—)N(x)=0, @®)

where V2 is now simply 2/dx2 and D is the diffusion constant. Consequently and noting that
constant neutron velocity '

10
——N(X,)=0
o (X,1) )]
leads to
ON(x,1)
——==0.
o (10)

We have the two alternative forms of the Helmholtz equation [4]

N"+B*N=0 (an
and
¢"+B’$=0, (12)
where
Bz_VZ,—Za
D

We note that Eqs. (11) and (12) have been studied extensively in the mathematical
literature as well as in applied physics, engineering vibration and elastic stability [1].
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Before proceeding to the next stage which is to solve the diffusion equation for the
corresponding geometry and material composition, we note that the quantity

vZ,—Za
D

B = (13)
is known in reactor design theory as the material buckling of the reactor although we are not
aware of any explanation given for the use of this expression. However, now and in view of the
formal identity between the critical neutrons diffusion equation and that of the linearized elastica
equation, this expression is quite understandable. Nevertheless it is misleading because a reactor
does not buckle. The quantity B? is at best a reactor critical value which is analogous to the
critical eigenvalue buckling load of the Euler Elastica or the eigenfrequency of a vibrating
structures. It is therefore a far better terminology to call B the critical eigenvalue of the reaction
and the corresponding solution, the eigenmode or eigenvector of the reaction at criticality.

3. The effect of geometry
For basic simple geometries and boundary conditions, the "reactor" diffusion at criticality

could be just as easily solved as any classical elastic buckling problem [1]. Ignoring boundary
conditions, it is evident that a sine or cosine function shows that

where [ is a geometric quantity. This result confirms the obvious intuitive feeling that for certain
fissile material at criticality there is only one particular geometry corresponding to it. For the
trivial case of a one-dimensional reactor in the form of an infinitely long slab, the solution is

N=C, cos-g, (14)
a

where C, is a constant @ is the extrapolated thickness of the physical thickness of the slab.
Consequently inserting Eq. (14) in Eq. (11) one find that

2
B? =(§) : (15)
a

This way the thickness of the slab for which neutrons absorbtion and neutrons leakage are
balanced is determined. The classical well known cases for the other fundamental geometrical
shapes namely the sphere, the rectangular and the cylindrical reactor give the critical eigenvalues
(the so called geometrical buckling)

2
Bt 2] 16
- (R (16)

SERBRH]
B =|=| +|=]| +|= (17)
a b c
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and

2 2
B = (—2"105 ] +(—’f—) ; (18) .
e R H
respectively where R is the radius of the sphere, a, b,Z are the dimensions the rectangular and

H isthe height of the cylinder. This corresponds to selfweight buckling.

At this point we should address the question of the role played by geometry and the most
optimal geometrical shape which would clearly correspond to the smallest critical mass for the
onset of steady state fission. This question can be answered without involving material
composition which can be eliminated from the analysis. For simplicity we start by comparing the

spherical shape with that of a cubic shape (2@ = b=¢ ). Now at criticality we must have
B} =B} (19)

and therefore

(2) =3(-’~5) . (20)
R a

Consequently one finds that

a=R\3. 1)
Since the critical mass of a sphere and a cube.made of certain fissile material are
4
m,=V.p= (E”R )p (22)
and
4 o
m,=V,p= E”R P, (23)

respectively, then one finds that

LA A Jp—— (24)
m, Vp 4

In other words, the critical mass of a cubic reactor is about 24% larger than that of a sphere. Next
we would like to investigate the efficiency of the cylinder compared to the sphere. To do that we
have to find first the optimal cylindrical form.

From the critical eigenvalue of the cylinder as given by Eq. (18) and solving for R? one finds

=, (2.405)

T (25)
R B, —(71'/1'77)z
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The corresponding volume of the cylinder is then

v, = ,{Ti’;ﬂ;_}ﬁ ) (26)
B —(x/HY

The minimum of ¥, is given by

el | 27)
dH
and leads to
g, = 1‘[3— (28)
B oy
Inserting in R? one finds
R, =229 7, —o054131 9
a2
The critical eigenvalue of the optimal cylinder is thus
8.676037
By =——— (30)
R
@ -
Setting B., = B} one finds that
8.676037 _7i
R;, R?
From which one obtain
R, =R, (0.937585403). (32)
Consequently
m
—2 =1.4194073 (33)
m

s

That means the critical mass of the optimal cylinder is only 14% larger than that of the sphere.

4. The numerical value of the critical mans

So far our analysis has been confined to finding general expressions. To obtain numerical
values for the critical mass we need to consider the properties of the fissile material. The
measurable critical dimensions of the reactor are thus obtained from equating the critical value B?
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expressed in terms of the geometry of the reactor, the so called "geometrical buckling" to that of
B2 expressed in terms of the cross-sections and other physical parameters of the material of the
reactor, the so called "material buckling" which we must determine next.

The first material quantity we will determine here is the diffusion coefficient D. A simple
expression may be found for D using the so called one speed approximation to transport theory.
In this approximation D can be writen in terms of the macroscopic transport cross section as[4-6)

D=—o, (34)

where Z, is the macroscopic transport cross section. It is also some times more convenient to
work with the so called diffusion length which is defined as

1
= 35
L=\ery ©3)

where I, is the absorbtions cross-section.
Further, we may recall from the elementary theory of neutrons diffusion that first, the
macroscopic cross-section I, is related to microscopic cross section o, by the relation

Z,= ]VO'(_'_), (36)

where N is the nuclei number and second that the mean free path is given by

l =

1
) ey E ’ 37
E(--~)

Taking as a fissile material U2’ and considering fast rather than thermal neutrons, then we
may use the following experimentally determined values 1 which are of course subject to the
usual experimental scatter: N =0.0482(10)* nuclei per cm3;
n=N/p=AlA4,p=2536810)";0,=4 bam, o, =15 bam; o, =1.65 bamn and v =24,
where v is the neutrons number per fission. Evaluating for these values one find that [4-6]

2, =No, =(7.23)(10)7, (38)

T, = No, =(7.953)(10)7, (39)
and

z, = No, =(19.28)(10). (40)

1 The relation between the microscopic cross-sections are given as following: the totalis o,, =0, +0,,
where o, means scattering and o, means absorbtion. We have further o, =0 +0,,
n=vi(l+a)=v(c,/c,), ad o, =1.06(4)">(10)" m2nuclus ie. o, =0.1064"" bam.
Finally Z,=%,-Z% Z,, where M, =(2/3)A. Note that for isotropic scattering f, =0 and
%, =Z,,. For heavy nuclei the factor 1/(-5, )] =1 and thus we have £, ~ Z,.
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Inserting in L, D and B one finds

1
6z.z,)

D=l'E, = - 1.728907 (42)
3z

t

= 4.6625, (41)

and
vz ;= Z, = »
B= S = ,/(5.436)(10) =2.3316(10)". (43)
Therefore the critical radius is

R, ===13474cm (44)

Wi

and the corresponding critical mass using S =19.05 g/cm3 of metallic U235 is
M, =195.2 200 kg. (45)

This is identical to the classical result obtained for the first time by Serber [7] a long time
ago. 2 This result over estimates the critical radius by a considerable amount because we have
used an elementary diffusion theory not taking the true geometricai boundary conditions into
account. We have been effectively using a theory developed for thermal neutrons to calculate
M , for fast neutrons which is quite different from the thermal case.

Nevertheless the main conceptual thinking behind the theory is sufficiently transparent when
using the present simple analysis so that we can easily propose some refinements of the
calculations which we do next. To improve the preceding estimate M ~ 200 kg we present two
methods. Let us give first the simplest of the two methods. It is based on an initially crude
estimation of the mean free path of transport /., We know from Lawson criterion of fusion that

Nt >10"s/cm. (46)

Consequently the time t must be of the order

(l O)M

TR ~1.21(10)""s. (47)

Z One could argue that the diffusion equation used her is equivalent to a classical Brownian motion
where the dimension of a particle path is d =1. On the otherhand a quantum object with 1/2 spin like the
fission neutron must have according to =“space theory a fractal Hausodov{f 'dimension d”=2/3.=
2/3. For the four-dimensional =° space we must take a factor (2/2)(4'1)'= (2/3)3 into account. This
leads to a critical mass M¢ = (2/3)3(195.2) = 57.83 kg which agrees with the improved value mentioned
in a 1997 book edited by King, namely M¢=56 kg for U233 in pure metallic form.
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Since
121V,

where V =~ 2(10)°,cm/s is the velocity of fast fission neutrons, then we find that
12(0.21)(2)(10)=4.2 cm. (48)

Therefore we can assume that the mean free path of fissionis / ~5 cm.
To see that this is quite reasonable we calculate the mean transport free path for U235 and find
that *
1 1

, ~5.25 om. (49)
T, 0.1905

In agreement with the experimental evidences it is reasonable to assume that *
R >(1/0.8) = (1/0.8)(5.25) ~ 6.6 cm. (50)

The reduction factor is thus

R_135 5 ' (51)

Therefore the corresponding critical mass is found from Eq.(45) and Eq.(51) to be
200

@

It is just a coincidence that this value is exactly the same value found when applying R.
Oppeneimer's improvement of R. Serber's result using a neutrons diffusion theory which include
a neutron reflector for the fast reaction [7].

M, ~ = =25kg. (52)

5. The effect of neutron reflector

The second method to check and improve Serber's classical result M =~ 200 kg is based on an
improved diffusion theory formula [7]. The originally improved theory used here is due to
Oppenheimer, however it was written in a somewhat cumbersome form and in addition Ref. [7]
contains printing errors so that for the sake of clarity we redrive it in a simpler way starting from
our more familiar expression for the so called geometrical buckling

=
D

B? (53)

3 This is an estimation based on the limiting case of neutons energy in excess of a few MeV, namely
o, = 27rR: and approximate value for Ry, the radius of the nuclei of light mass number
R, = (1.3)(10)™ 4" meter which gives for U235 the value Z,= 20/meter and a mean free path

1=1/%, = 50 mm.
4.1t is frequently reasoned that R>ly is very restrictive assumption and that R</; is sufficient for fast
fission
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Noting that
p=_L
3z,
one obtains
B? =3%,0Z, -Z,) (54)

Next we assume that the existence of a neutrons reflected and we introduce the justified
approximation, (at least for U233 as can be seen from Egs. (38) and (39)) that

I, ~2Z, and z, =0 (55)
this way we find that
B*=3z,Z,(v-D). (56)

The improved expression of B’ based on the improved diffusion theory is obtained by a
multiplication by a tamper factor A, given by

A, = [2(1 +0.3(v - 1)'2-’]]2. 57)

(4

Thus

2
B*=3L% (v-DA,=12L,Z ,(v—l)[1+0.3(v—1)z_—’) : (58)

t

Evaluating for the same values used earlier for U235 one finds that
B? =3138.946(10)™. (59)

For spherical geometry we leave

”2

B*= i 0.3138046

and thus
R =15.608157 cm. (60)

Consequently for p (U235)=19.05 g/cm’ one finds the critical mass to be

M, = p(4/3)r (5.608157)'= 14.07486 kg. (61)

This is very close to the most frequently quoted value in the literature namely 4 M_ ~15 kg

4.Recent calculations shows that if U?*, P*° or CF** is compressed to twice the normal density, then the
critical mass is reduced to M;=4.7 kg. M; =1.8 kg Mg =0.5 kg, respectively. Note also that
M (dg°Y=Mc(2/3)’=(15)(2/3)=4.5 kg is quite close to M=4.7 kg of U** with p=2(19.5) kg/cm3. Our
estimate M=14.07 is very close to that of J. K. King.
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for U235, In praxis one would usually work with a sub-critical mass say 10 kg then by
compressing it to a much higher density by reducing it's radius from 5 to 4.3 cm for which p
become equal to 28.6 g/cm3 criticality is achieved for M =10 kg < M_ =15 kg. This is the
implosion method.

It may be interesting to mention that Oppenheimer in [7] seems to have used a wrong value for
p namely p =15 and obtained the larger wrong value M =25 kg.

In other words if we use here p =15 and change the values of the macroscopic cross-section
accordingly we would have found M,= 25.16 kg in accordance with Oppenheimer's original
(inaccurate) analysis which over estimated M, by more than 60%. In other. words the critical
mass depends sensitively on minor changes in the values of the physical parameters. That means
finding the accurate material values experimentally is far more important than improving the
differential equation of neutrons diffusion. We conclude by mentioning that in a forthcoming
paper [12] we will be showing how all the preceding results may be obtained in a much simpler
way and how they could be also improved using the theory of Cantorian spaces as well as the
fractal space time approach to quantum physics [8-11].

I1. Part Two - Self-weight
6. Self-weight buckling of an elastic column

The design of a long column with a high slenderness ratio [1] is in many ways similar to the
problem of bringing two subcritical masses of a fissile material together to form one critical mass
[11]. In both cases we are dealing with a critical state which may become fatally unstable [1,11].

The differential equation governing the buckling instability of an elastic column under its own
weight is given by

Elo" = p(l-x)o",  ()=d()/dx, (62)

where EI is the bending stiffness of the column, p the weight per unit length, / the height of
the column, w the lateral deflection, and x is the axial coordinate with x = 0 at the fixed bottom
and x=/ at the free end of the column.

Eq. 62 is easily transferred to the Bessel differential equation

ekl i 1
H +Eﬂ +(1—E)/j=o, (63)

2 (p
B — z=—1/-—1- . 64
g - Sl ©

The solution of (63) can be expressed in terms of the Bessel functions and the critical buckling
weight is easily found as an eigenvalue of (63) to be

where

A, =(pl/ EI)=(7.834401)/ . (65)

We will come back shortly to this eigenvalue.
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7. Fission critical mass for cylindrical geometry

The critical eigenvalue for fission in the case of a cylindrical geometrical configuration is
easily obtained from a corresponding stationary Helmholz equation as discussed above.

For the correct boundary conditions this is found just as in the self weight buckling problem
using Bessel functions to be

2 2 2 2 2
o] (4] (5T

For the optimal cylindrical shaped critical mass we have

H=R[ z\2

2.40483

] = R(1.84735). (67)

Inserting in B one finds

2 2
B - (nX2.40483)] +(2.40483) S _-
()2 )R) R
The analogy is thus as follows:

Self weight buckling Self weight buckling

Physical Ip/ EI (z,-z,)/D

Geometrical I R?

Numerical constant a=7.834401 b =16.853501=2a(2.1512)

8. The critical mass for cylindrical geometry

We have shown that the optimal or smallest critical mass for a cylindrical configuration is
given by
H = R(1.84735). (69)

We have also shown that efficiency of such a design is about 14% less than the spherical form
b It is also not difficult to show that the implosion method is extremely simple for a cylindrical
form. The explosive lensing design is in this case practically a one-dimensional problem. This is
in contrast to the three-dimensional problem associated with spherical shapes. Therefore the
explosive lensing is far simpler for a cylinder compared to a sphere. In Fig.1 we are showing
schematically one such design. Such a design was most probably the basis for the first South
African design which they used after the successful zero yield testing of the 55 kg 80% U™
"Melba" gun design at Avenda. This was between September 1979 and the beginning of 1980.
President De Klerk disclosed the well-known "secret" at a joint session of parliament on
24 March 1993.
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Fig. 1. A design for a fast fission device. On the left we have a side view of the optimal cylinder
shown in a compressed "solid" state on the right. The critical mass is only 14% larger than that for a
spherical geometry. For Pu239 we have M, =5.7 kg assuming normal density,0=19.8 g/cm3 and a
reflector.

It may be mentioned at this point that South Africa seems to be the only country in the world
who ever developed and then voluntarily gave up nuclear weapons. It is even claimed that they
destroyed all their capabilities to design or fabricate such weapons. If this claim is true, then it
must be an extraordinary example which every country in the world should follow.

There are some "historical” information that the final South African "gadget" was a 65 cm in
diameter and 1.8 m in length. The weight is thought to have been about 1000 kg and used 55 kg
of 90% U™ with an estimated yield of 10-18 KT. This is very low effciency of about 1 to 1.8%
which indicates a very conservative and "safe" design.

In conclusion we may just give an idea about the amount of compression needed to increase
the density in order to achieve criticality.

To illustrate the idea let us regard a critical spherical mass of a fissile material of density
p=18.5 g/cm for which M, = SV, = 50 kg. Then the radius must be R, = 8.6411 cm and volume is
V= 2702.7 cm3. Suppose now we make from the material another sphere with a mass M = 40 kg.
Such a mass is clearly subcritical. The subcritical radius of this mass is R, = 8.02170 cm and the
volume is V, = 2162.162162 cm’.

Now the density which would make such a mass just as critical as M, = 50 kg is found from

p(V1)=(50)(1000). (70)

That means
_ (50)(1000)

= =23.125 g/cm’ 71
T 2162.162162 4 1)
and the critical value is then

y _ (18.5)(2162.16216)
* 23.125

=(p,¥, )/ S, =1729.7292 cm’. (72)

Thus the critical radius which makes m= 40 kg critical is

B o 3‘[ Ve _ 3\/(3)(1729.7292) AT, 73)
* N (4/3)(x) Ar
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The radius reduction required is thus
AR =8.0217024 — 7.4466883 = R, — R, =0.57501 cm. 74)

This is a reduction of about 7% which is easily achieved by conventional chemical explosives.
In case of using U*** for which M;=15 kg with tamper and, p=19.05 kg/cm® one could make a 10
kg mass of U™ critical by reducing the radius from 5.728433 to 437716 cm that is to say a
reduction of 12%. For a plutonium Pu® the critical mass for ordinary density p=19.84 kg/em’ is
M_=15 kg. A reduction, by 11.2% of the radius using implosion will reduce the critical mass to a
3.5 kg of Pu239. For the sake of having an instructive comparision we give in Table 1 the critical
mass for spherical geometry for various pure fissile materials.

Table 1
The theoretical critical mass for different fissile material in pure state (all the values are without
reflector)

Fissile material Critical mass (kg)

Pu238 9

Pu239 10.5

Pu240 41

Pu241 13

Pu242 88

Am241 115
Conclusions

There is an instructive analogy between the eigenvalue problems of structural engineering and
applied mechanics and that of neutrons diffusion technology. In the present work we have given
simple derivations to some previous classical results and corrected various errors which exist in
the literature on the magnitude of the critical mass for fission. The knowledge of the exact value
of the critical mass is of course extremely important for safe application of the corresponding
technology in many engineering fields such as canals excavation, natural gas stimulation, mining
and oil shale treatment [13].
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