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Abstact

In this paper, the WHEP technique ,which is the Wiener-Hermite Expansion combined
with the perturbation technique, is used to obtain an approximate solution moments for the
parametrically forced Duffing Oscillator. A general algorithm is described to get the Gaussian
part of the solution process under some necessary assumptions for the solution possibilities. A
case study for zero initial conditions is considered to illustrate the solvability of the obtained
deterministic equations.

1. Introduction

In recent years ,many investigators studied the Duffing oscillator under different point of
views. Duffing oscillator under random excitation was studied by Atkinson [1] using
eigenfunction expansions ,by Spanos [2] using stochastic linearization technique, by Caughey in
[3] ,by Adomian [4] using decomposition technique, by Ahmadi [5] using perturbation technique,
by Gahedi and Ahmadi [6] using Wiener-Hermite Expansion (WHE) technique, by Ibrahim and
Pandya [7], by Abdel-Gawad and El Tawil [8] introducing WHEP technique, by Mahmoud G. [9]
using the stochastic averaging method, by Bezen and Klebaner [10] using the method of detailed
balance and many others.

A general approach was described in [8] which used a combination of the WHE
technique [11,12] and the perturbation technique to solve the one dimensional nonlinear
stochastic differential equations. Although a combination of square and cubic nonlinearities only
were examined in [8], the approach can be applied on different problems successfully. In this
approach, which is called WHEP in this paper, any random function S(t) can be expanded as the
following:

S(t;0) = SPH® (t)+_ /< SW(t,1,). HY (1,;0)dt,

A
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where S 0) () are deterministic kernels, {H0)} is a complete set of stochastic orthogonal functions
in which

H" = n(t): white noise,
H? =H®(¢,).HO(¢,),
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2 ;
and genenally H® =H*D.HO(1))- T HY™ (t,,..,t,,.).5(t, . — 1),
m=1

in which 8 is the Dirac-delta function. The random outcome ® belongs to an arbitrary triple
probability space (Q2,0,P).

The ensemble average of S(t) is S(0). The first two terms in the infnite series (A) represents
the Gaussian part of the stochastic- process while the rest of the series represent the non-Gaussian
part.

Applying the expansion in the stochastic differential equation transforms it into a
stochastic integro-differential equation which is unfortunately more difficult than the original
one.Taking the ensemble average after multiplying by the appropriate H function, a set of
simultaneous deterministic integro-differential equations is obtained. They are still not simple to
be solved analytically in the majority of the cases. WHEP technique uses the perturbation
technique to solve this set and it proves to be successful in obtaining an approximate solution
depending on the order of approximations required. The existence of the perturbation series can
be proved through the use of the successive approximations. The obtained set of deterministic
equations can always be solved successively. The technique was examined successively in [6] for
a simple Duffing oscillator, in [8] for mixed square and cubic nonlinearities and in [13) for a Van
der Pol oscillator and in [18] for Mathieu equation using the multiple scale method instead of the
direct expansion method. The general algorithm of WHEP and more details on the expansion can
be reviewed in [8].

2. Problem Description and Solution

The equation of the parametrically forced Duffing oscillator of the following form is
considered in this paper,

Lx +cx3+6cost(x® + x’) = n(t) 1)
where (') denotes differentiation w.r.t. t ,

d? d 2
L‘EF'P.EE‘PI), ( )

and € is a parameter with a small value; lel <1,

The white noise has average and Dirac-delta function as correlation.
For a small t and small oscillations, the following assumption is used through all the paper,

cos t(x3 +x')m 1-t2(x3+x')2/2 : 3)
Applying WHE, the solution process can be expanded as the following:
()= x@+/txP(t,t,)n(t,) dt,, 0<t, <t 4

where the Gaussian part only is considered.
Applying equation (4) in equation (1),the following equation is obtained:

Lx® + Ll+c(x‘°’)J + 3(x‘°’)21+e —%[ (x(°))6 +(x‘°))’x"°’ + (x"“’ )2 +

{G(x“” )5 + 3(x‘°’)2 x'® }l + {xw))’ + 230 }I’ ]= n(t)

(%
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where
5/ xM(t,t)n(t,)dt, . (6)

Taking the ensemble average of equation (5), the following equation is obtained:

Lx® +c(x®)® +

M

$E= %t:[(x"’)‘ + @™y .x® 4+ (x'®)?]=0
Multiplying equation (7) by n(t,) ,taking the ensemble average ,using the statistical properties of
white noise n(t) and then replacing t, by t, ,tne following equation is obtained:
L x®M(t,t,) +3c(x®)2.xP(t,t,)
- s—:-({s(x"’ ) +3(x®)2.x'®}x®(t,t,) ®)
+{(x®)? + 25D Lx' O (t,¢,)) = 8(t-t,)

Equations (7) and (8) are deterministic integro-differential equations in the unknown kemels.
They are still difficult to be solved analytically and approximate methods or numerical
techniques should be approached. Equation (7) is a nonlinear equation while equation (8) is a
linear equation with variable coefficient. If we rewrite equation (7) in the following form:

Ll = —e(x{")*

)
R R A U LN LR

we can prove the existence of the series:

°® - Zss (10)

=0
Similarly, if we put equation (8) in the following iterative form: '
L x(, (t,t,) = -3c(xP)2x (4, 4)
+ e + 36D KR ) an
+{(x$))® + 253 FxiO(L )]+ 8(t-t,) L§20,
the following series exists:

Pt t,)= is'.xg"(t.t,) : (12)
=0

If we consider only second order perturbations, equation (7) yields the following three equations:

Lx®" +cx®)=0 , (13)



184 Magdy A El Tawil, Gamal M. Mahmoud

Lx® +3c(x®)2x{® +
1 ( { ] ) 1 (14)

t2
+1- -2—[(xg")‘ + (™). ® +(x")=0,
Lx® +3¢(x®)2xP + 3c(xP) 2 x(”
t?
- _2_[6(x=.) )s xg‘) + (x?) )! y l;(.) + 2!“”!‘1‘” (15)
+3x®)2x®x®]=0
‘Similarly, equation (8) yields the following three equations:
Lx®(t,t,)+3c(xM)?.xp" (4,t,) = 8(t-t,) , (16)
L x® (t,t,) +3c(x{"). x®(t,¢t,)+6cx{"x{"x{’
t2
- -z—us(xg'))s +3a?)2 . x) P LxP (L) an
+HEM» + 2@ L O (LYy))=0 ,
Lx®(t,t,)+3c(x)2xP (,t,)+ 6exMxx®
+3c(x®)2x® + 6exPxPx(?

t2
- —2—[{6(x§" ) + 3™ xi @ xP (L) (18)
+(x®)? + 251} P (t,t,)
+30(x®) x®x® + 321, ® + 6xr OxPxd 1xP ()

+3x®™)2x® + 250 1P (1,1)]= 0
3. The Solution Algorithm

Equation (13) is a simple deterministic Duffing equation. The following approximate solution
[14] can be used:

x® = Dexp(-at/2).cos(vb.t+ 6~ (3c/ (8ayb)).exp(-at)) (19)

where D and 8 are constants which can be computed from zero initial conditions. The rest of the
equations, equations (14),...,(18), have the following general form:

Ly+f2(t)y=G,(t); }=12,--5, (20)
where
t(t)=3c.x® 21

and the excitation function G depends on the the right hand side of equations (14),...,(18).
Equation (20) has an oscillatory solution [15,16] since the time varient coefficient is always
positive. We do not have a general closed form solution for equation (20). Accordingly, we may
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be forced again to approach approximate methods or numerical techniques. However, the
solution possibility depends on the initial conditions of the original problem and the complexity
of the shape of the excitation functions. Seeking a general solution for equation (20) is beyond
the scope of this paper.

The general computations algorithm can be summarised as follows:
Step-1: Solving the linear equation (13).

Qutput: x(t).
Step-2: Solving the linear equation (14).

Output: x(t).
Step-3: Solving the linear equation (15).

Qutput: x(t).
Step-4: Solving the linear equation (16).

Qutput: x{(t).
Step-5: Solving the linear equation (17).

Qutput: x{"(t),
Step-6: Solving the linear equation (18).

Qutput: x{’(t).
Step-7: Computing the solution moments.

2
Ex=x"(t)= Te'xP (1), (22)
=0
where E denotes the ensemble average.

Var =,/ (x® (8, ¢,))%dt, @3)
=/ P2 +52(x™)? + 26.xPx + 2622 Px P Jdt,.

where Var denotes the variance. The previous moments are sufficient to determine the probability
density function of the Gaussian solution process proposed in this paper.

4. Case Study

Considering zero initial conditions ,the following results are obtained:

x@ =0 (24)
x@ =-1/b (25)
x©® =0 (26)
Ex=-¢/b 27
xO(t,t,) =h{t-t,), (28)

where h (-) is the impulse response of the equation Lx{’ = 8(t-t,),
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sP0(t,t,)=0, (29)
x®(t,t, =%€.,/t h(t-s).h(s—t,)ds . G0
Accordingly, the variance of x is
2
Var x=, /*h2(t- t,)dt, - 5 ofth(t-t,).
(31
o/th(t-s).h(s-t,) ds dt,
c’? '
t o/ Lo R(t-9).h(s-t,) ds e,
S.Illustrative Example
Let a=0 and b=1,i.e. the Duffng oscillator takes the following form:
Lx +cx®+6 cos t(x? + x') = n(t) (32)
d2
L=—+b. (33)
dt?

The variance takes the following final form:
Var x =.5 t-.25 sin(2t)

e (34)
+9c2g62[ §+§-sln3 t.cos t-%t’sln 2t] .

The graph of the root mean square of x is shown in fig.1.
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Fig.1. The Root M.S. of x; a=0, b=0, c=1; The root mean square of x, s(t), versus time t for
different eps. Levels.
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6. List of Assumptions

The following is the list of assumptions used in this paper:

1. Small t and small oscillation which insure the use of the first two terms in the cosine series.
2. Considering the Gaussian part only of the solution process.

3. Taking only second order pertubations in consideration.

4. Using an approximate formula as a solution of the simple Duffing equation, equation (19).

7. Suggestions for modifications

The following suggestions can be considered for developing this research:

1. Taking more terms of the cosine series. This leads to some relaxation in the first assumption.

2.Taking some terms to represent the non-Gaussian art of the solution process. This leads to more

realistic computations.

3.Increasing the order of perturbations. This leads to modify the present solution moments in this
paper and the other modified cases.

4.Using the solution of the simple deterministic Duffing oscillator in terms of the Jacobian
elliptic functions [17].

All these modifications can be processed through the WHEP technique used in this paper.
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