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Abstract

Main purpose of the paper is to present theoretical aspects and Finite Element Method
implementation of the sensitivity analysis in homogenization of multicomponent materials in
the linear range; the problem is solved by using of the effective modules homogenization
approach. The deterministic sensitivity analysis is worked out in general form and is illustrated
on the example of some material parameters such as the heat conductivity coefficients and
Young moduli of the component materials, for instance, as well as for particular 1d periodic
two-component composite. The results of sensitivity analysis presented in the paper may be
successfully applied to computational optimization of engineering composites, to the shape
sensitivity studies and, after some extensions, to random composites analysis.

1. Introduction

As it is known, the sensitivity analysis in engineering sciences is provided to verify how
some input structural parameters of specific engineering problem influence the state functions
analyzed (displacements, stresses, temperatures or another potential state functions) [1,7-
10,12,17-18]. This sensitivity is computed by the use of the partial derivatives of the state
function considered with respect to the chosen input parameter of the structure. These
derivatives can be computed starting from fundamental algebraic equations system obtained for
the problem being solved. It is important to underline that this methodology is common for
different discrete numerical techniques: Boundary Element Method (BEM), Finite Difference
Method (FDM), Finite Element Method (FEM) or, alternatively, some hybrid and meshless
strategies [16]. From the computational point of view there are the Direct Differentiation
Method (DDM) used in the paper, the Adjoint Variable Method (AVM) or computational
finite difference scheme in the domain of structural design sensitivity analysis.

The paper is devoted generally to some sensitivity studies in the homogenization of
some two-component fiber-reinforced composite materials. The composite model assumes that
the structure constituents are linear elastic and transversely isotropic in the context of effective
elasticity tensor components derivation and linear isotropic in heat conduction (generally linear
potential field) problem. The main purpose of this study is to obtain numerical algorithm for
verification of the most crucial material parameters of the composite. It is done to effectively
optimize these materials in the context of designing their constituents as well as their volume
fraction. The homogenization method improved here is the intermediate numerical tool to
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exclude the necessity of composite micro-scale discretization and, at the same time, to reduce
the total number of the structure degrees of freedom; analogous studies have been done
previously in [20] but in the numerical phenomenological approach only. The main value of the
sensitivity approach proposed is that the effective tensors sensitivities computed do not vary on
the arguments increments - differentiation with respect to the input parameters (Young moduli
and heat conductivities, for instance) is provided by the mathematical closed equations only.

2, Periodic composite model

Let us consider a periodic fiber-reinforced two component composite in plane strain in
the unstressed and undeformed state. We assume that the composite is built up with the fibers
parallel to the x; direction; the cross-section of the structure Y — R* with x3 =0 the plane,
orthogonal to the longitudinal direction, is shown in Fig. 1. Let us consider the periodicity cell
Q (Representative Volume Element - RVE) of Y with the rectangular shape parallel to x; and
X, axes, respectively, and defined by the external lengths I; and l,. Let further all geometric
dimensions of Q be related to the corresponding dimensions of Y by a small parameter & > 0.

Let us note that interface boundary (or simply interface) is the continuous contour
dividing two different materials in the periodicity cell; in this context it is assumed that fiber
and matrix are perfectly bonded. Considering further mathematical formulations the interface is
assumed to be the regular and sufficiently smooth contour, however it should be outlined that
some nonsmoothnesses can be observed within the interfaces and, moreover, interface defects
between fiber and matrix may occur [4,15].

Q

Fig. 1. The RVE of fiber-reinforced composite

Both components of composite are assumed to be linear elastic and transversely
isotropic in the case of elastostatic problem while linear and isotropic in the case of linear
potential field problem homogenization [14]. Thus, material parameters of the components are
piecewise constant functions of the position only

pl;xEQI (1)
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It should be mentioned that the homogenization method presented for the fiber-
reinforced composite may be applied for instance to homogenize n-component materials
continuous and containing some microvoids [6] as well as granular media built up with the
grains of different shape and different physical and mechanical properties.

3. Homogenization method
3.1. Linear elastostatics problem

To derive the expressions for the effective elasticity tensor components let us rewrite
the principle of virtual work for the homogenization boundary problem defined on the
periodicity cell Q as follows [3,14,21]:

Icijklekj(X(pq)) g;(v)dQ = _[ f,v,dQ )
Q Q

where v is any kinematically admissible periodic displacement function while Y, represent

periodic displacement fields to be determined and called homogenization function. To obtain
the solution, the L.H.S. of Eq. (2) is divided into the components corresponding to regions
Q,, Q,. Neglecting body forces of the composite there holds

gcijmskl(x(pq)) &5(v) dQ+ [Cyen(xpp) 85(v) 4=
1 Q,

= [ -oP)n;v; d@n)

Q)

(€))

where cf,l), osz) are the interface stresses at the 9Q;,. To calculate the homogenization

functions ¥ ,,, the following stress boundary conditions are applied:
= . 4
S x(pq) [C-m ]l i = Fai o, * € 00y, @

while periodicity of x (pq) 1€ads us to the following displacement type boundary conditions:

[x(pq)]=0; xed )

6

—ax(pq) =0; X; =0,li ( )
Ox;

The component of unit vector normal to the interface 8Q,;, and directed to the fiber interior is

denoted by n;, while [C ,Jpq] is the difference of the elasticity tensor components for fiber
1

and matrix. Thus, Eq. (3) can be rewritten as
Icuklekl (X(m)) u(v) dQ + J.C-Jldskl(x(pq)) u( ) dQ =

= j [c,",q LQ n,v; d(oQ)

M
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what allows to compute the functions 1), %2 and X@e2). Next, the effective elasticity tensor
components are calculated. To this purpose it is shown that

z [Cina ], v 0= I o £4() 40 ®
Since that we arrive at
!}cijk,sk,(x(pq))sij(v)dm-{j}cijm g;(v)dQ, (12)
or, alternatively
‘J;(Ciqu +Ciju5u(x(pq))) g;(v)dQ=0. (13)

Since the fact that the effective elasticity tensor components are to be constant within
the composite there holds

CSJCP? = 2 I( ijpa + Cijia€u (X(pq) )) dQ. (14)

3.2. Heat conduction as the illustration for the linear potential field problems

By the analogy to previous considerations, single temperature homogenization function
® is derived and, on its basis, the effective conductivity coefficient k®® constant for the
whole composite is determined. To calculate @ and k*® it is assumed that the periodicity of
the essential and natural boundary conditions for xe 0Q2

(15)

q)xean(’ =const.,q xEﬂQq =0.

Variational statement of the heat conduction homogenization problem can be written as [14]

-1,2{ AN [acp (ko)) ]dQ+ f [5@ (o, ]dg] jacb([k(” K@le, ) i) o)

Due to the divergence theorem [3,21], Eq. (17) takes the form

( [&p (ko)) ] 0+ j [5¢ (kPo, ] dQJ [ f 5c1>([ki]d>,i)nid(an)], a7
_u

i= 12 o,

where [K] denotes the difference of composite constituents heat conductivities at the interface
0Q,,. Next, we have

j(scb k,-),idQ-_-Iﬁd)i k; dQ + J’scp k;;dQ = i

= jk,n,sq)d(ao) [[k; ]nacbd(aQ _[acp k;;dQ
xQ Ky
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and we arrive at
feoK,) d0=- [[k]n50d(Q) (19)

o) 2y,
what, included into Eq. (17), gives
T (”&b(k,-d{i)] _dn} =-[[s2&], 4. (20)
i=12\Q 4 Q |

Thus, since the isotropic character of composite components in the plane considered,
the effective conductivity can be calculated as follows:

KD = L [k [k1,0, a0, 21
Q Q

where 1; denotes the unity operator. The effective heat conductivity coefficient calculated
using the procedure presented above may be compared against the corresponding upper and
lower bounds for effective conductivity coefficient, cf. [5,11,19].

4. Sensitivity problem formulation
4.1. Effective elastic behavior sensitivity analysis

Starting from Eq. (14), the sensitivity of effective elasticity tensor components with
respect to sensitivity parameters vector h can be calculated as

ac@pqm d]1 01
M _ Y ) [c. ~Z 1 - [c..
= {I E’;Cupng} + {I l ‘J;Cuklek}(X(pq))iQ} ; (22)

We can rewrite this equation in the following form:

aceD 1 (Cy 1 0Cj 1 2% (X )
ijpq _ 1 UI. AC) s ijkl Q+—[C. ®PD) 40 23
oh |QI E‘; oh * IQI (J; oh akl(x(pq))i + IQI (_.; ijkl oh p ( )

and we observe that if the input sensitivity parameters are not the arguments of the elasticity
tensor Cj, there holds

ac(e &
ijpq =LJ.C5-H ki (X(pq)) 10 24)
oh [¢] 5 ! oh

while the derivatives of homogenization functions x,, Wwith respect to the vector h
components can be obtained computationally only. By the analogous way the sensitivity of

C,(J-e}g) components with respect to fiber shape [7] can be derived, however final equations have

decisively more complicated form and can be shown if only homogenization function can be
derived analytically.
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4.2. Sensitivity in homogenization of the heat conduction

The sensitivity of effective conductivity tensor kgjeﬁ") with respect to design parameters

vector h components can be calculated as

61;‘:’ {|94 J' } {!—fli £ k1, @, dQ}. @5)

The differentiation over the region Q2 may be carried out by the following way:

ok
e

Let us note that while the partial derivatives of heat conductivity with respect to the
sensitivity parameters vector may be derived explicitly, the partial derivatives of the
homogenization functions derivatives @ ,, have to be obtained numerically only. In the case
where the vector of design sensitivity variables is not included in the heat conductivity
coefficients there holds

LaQ+ — =21, 0, dQ+ (26)

6h

(eﬁ")

6h Qijku mT

27)

It should be mentioned that, as it is shown in the numerical illustration presented
further, detailed results on sensitivity analysis can be obtained from Eqs. (24,27) if only
effective characteristics have closed analytical form.

5. Finite Element discretization of the homogenization problem
3.1. Homogenization of linear elastostatics

Let us introduce the following approximation of homogenization functions y,; for
i,r,s=1,2 at any point of Q in terms of a finite number of generalized coordinates Q(rs)e and
shape functions ¢,, [2]

sy = Pialsyas bLHLS=12, a=1,.,N (28)

where N is the total number of degrees of freedom of the structure. By the same way the strain
€ (X (rs)) and stress o; (X)) tensors components are expressed

Ejj (X(rs)) = Bijrx.q(rs)a (29)
Siiirs) = %4 (X)) = CijuEra K r)) = CijaBrsa A rsya» (30)

where By, represents the shape functions derivatives. Introducing Eqs. (28-30) into the
homogenization virtual work principle it is obtained that

ISX(B)I ikl X(rs)k 1 Q= IBX(IS)IF(TS)ld(m) (no sum on 1,s) @D
22
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where, cf. Eq. (4)

= 32
Fire)i = [CrsijLle iy 32)
Furthermore, let us define the composite global stiffness matrix as
E © E
€
Kop =2 K3 = Zl jCiijijaBkmdQ (33)
e=1 e=l Q

for a,B=1,...,N. Using the matrix into Eq. (33) and minimizing the variational principle with
respect to the generalized coordinates, we arrive at

Kaﬂq(rs)a = Q(ts)a.) (34)

where Q) is the external load vector containing the boundary forces defined by Eq. (34),
homogenization functions ¥); are obtained in three numerical tests for r,s=1,2. To assure

the symmetry conditions on a periodicity cell, the orthogonal displacements and rotations for
any nodal point belonging to 9 are fixed. Starting from the functions Xy SO obtained the

stresses G ;(X () are calculated and averaged over the RVE due to the formula (14).

5.2. Homogenization of heat conduction problem

Let us assume that region Q is discretized by a set of finite elements and the scalar
temperature field @ is described by the nodal temperatures vector ¥, corresponding to

homogenization function as [2]
®O(x,) =H,(x;) ¥, ;i=1,2. (35)
It follows that
Q;=H,,; ¥, (36)

Then heat conductivity matrix Ko and the vector P, may be expressed as

Kap = Ikina,iHB,de (37)
Q
and
Py = [gHodQ+ [§ Hod(202). (38)
Q N

This leads to the following equations system:
To complete considerations on the homogenization problem implementation, it should

be noticed that three elastostatic tests are needed to compute effective elastic characteristics of
the composite, while the only one is to be solved to obtain the effective coefficient for linear
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potential field problem. Then, in the case of coupled thermoelastic problems all these functions
can be found by the use of parallel computational procedures.

6. Discrete approach to the sensitivity analysis in homogenization
6.1. Finite element discretization of the effective tensor sensitivities

The classical deterministic discretized elastostatics problem given by Eq. (36) is
rewritten as follows:

Kag. i SR A(rs)a 6Q(rs)a (40)
oh (rs)a af T o B 5 »

to calculate sensitivities of homogenization function components as

(rsye -1 Qe K Q)
L IR R W Y

oh “oh oh

If design variables are not the arguments of the R.H.S. vector, it is obtained that

aQ(rs)m - K_l 6K af (42)
“oh o " = d(s)a -

Kop

where the derivatives may be computed explicitly or thanks to the finite difference

scheme [17]. Next, the sensitivity of the effective elasticity tensor components is calculated
starting from Egs. (14,24) as follows:

(eff)
oC ijkl

oh [Q|'[

Ukl

dQ +

ijpq
By A payy

Bl

CpuBuy 1402
q 1 y

(43)
_f X dQ + j' Ll K. Q.. ,dQ+
IQi IQ‘ Kly By ~<(pq)B
K, 1 4 0Q
]QIJ‘C”HB =2 = Qapd +ﬂic”“‘B“’K : a(:w Q

for o,B,y =1,...,N. If for example the sensitivity parameter is introduced in the form of the
Young modulus h=e, then we introduce the elasticity tensor as

Cijkl (e(x); V(x)) = e(x) Aijkl(v(x)) (44)
and
= ; 45
acxjkl (ea(:)’ V(x)) - Aijkl (V(x)) ’ ( )

while finite element stiffness matrix component corresponding to a-th material parameters can
be expressed as
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o jo

K = [CB,,B,,d0 = [ WAL, B,,dQ. (46)
Q, Q,

As a result, the sensitivity of i-th finite element stiffness matrix component with respect
to a-th material Young modulus is calculated as

GKS% _ IAgjak)lBijaBklde; xeQ,

= 47
@ |
oe™ 0; elsewhere
Further, the sensitivities of the R.H.S. vector are obtained in general form
48
Npgra _ a([cmui])“i “Ta o “
& o “[ pqa)]“r
while the sensitivity of the effective elasticity tensor to Young modulus is equal to
aca 1 1 ]
_521_ " [Aude+ I—aIAWBmKﬂ;Q(M)de o
Q Q
(49)

1 - .
9 j CiwBiy [Z ,[ Afjk)lBianmdQ}Q(pqwdQ *
lle Q a=l
1 Y NG
T j CyuBy Ky [A(p:,,j]nde
Q5

By the analogous way the effective elasticity tensor components with respect to the
Poisson’s ratios of composite components can be calculated. Since the complicated form of
elasticity tensor description as a function of the ratios, the derivation is omitted here.

6.2. Sensitivity analysis for heat conduction homogenization problem
Taking into account the finite element implementation for the classical deterministic cell

problem, cf Eq. (41), the sensitivity of the temperature homogenization function can be
obtained as

K 50
af ¥ +Kap___l3:£a)_a,’ (50)
ch ch oh
what gives as a result
My _ g (@L- Keap j G0
oh  Plon om ‘

If only the RH.S. vector is not a function of the design parameters vector h, Eq. (51) is
simplified to the following one:
< aKa.ﬂ (52)




130 Marcin Kaminski

Ko

where the partial derivatives may be computed explicitly or, alternatively, obtained by
using the finite difference scheme as

(e)

ah " —[K“” h+1(d)s)-Kf;§(h)], (53)

where Kf;ﬂ) (h) is the e-th element stiffness matrix, h® is the d-th component of the D-

dimensional design variable vector h, € represents a small perturbation and the D-dimensional
vector 1y4) has the values equal to 1 for the d-th component and zeroes elsewhere

(analogously to the classical FEM shape functions). As it is known from sensitivity numerical
analysis the final result of stiffness matrix derivative value shows some variability with respect
to value of the parameter €.

Moreover, taking into account considerations improved in Sec. 4, the discretization of
effective conductivity tensor components sensitivity with respect to the vector h can be
formulated as

oK™

= "l |Q|f

"1 H, .Y, dQ+—jk1 a(H““‘T“) dQ =
(54

&) H. ., dQ+—J.k 1, H, a(\P )dQ
oh

1 c‘ﬁkij
a5 wl

Taking into account the result of Eq. (52) it is obtained that

akgjcﬁ') ,‘j
= Tﬂi = IQJI —1,H, KL P, dQ + o
o, K
+-1—jki.1mHamK5;[—i- Ly ) dQ
(OF A ' oh  oh

If heat conductivity tensor is taken as design parameter then

oK
P
—2 = [8,H, H, dQ (56)
oh 3

and
A

- —-—I—J'Side+

ja 1.H, . K;P, dQ+
15
7

jle K"(GH H ‘P)

Yoy

MGE

Further, for the case of h = kf,a ) there holds
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ok
6](5(-) :L.[Xaﬁij dQ+%J‘xa8ulmH nKpaPy dQ+
¢ ﬂl [ (58)

jk1 H, K (8,Hy H, ¥, ) dQ

"l

From the engineering point of view the sensitivity analysis of the effective conductivity

tensor components to the coefficients of particular composite constituents has more

applications. In particular, the most decisive component can be found during composite design

studies what makes it possible to optimize effective heat conductivity coefficient with respect
to this component neglecting variability of the other material parameters.

7. Some results for 1d structure homogenization

Let us consider for illustration of the procedure presented above the layered structure
with piecewise constant material and geometrical properties. In that case it can be shown that
effective Young moduli or effective heat conductivity coefficient can be described as
1

k(eﬂ') = .
dy ’ (59

=L
k(y)
Q

there is no need to introduce any homogenization function in this case. Let us consider the
RVE built up with n components defined on Q by the use of (k Al,l,) where ki=const. for
y €], and such that k; #k; for ij=1,..,n. Hence, the integration in formula (59) can be

rewritten as

—

ke = ’
i=l i
where variables A;, |; denote the cross-sectional area and the length of i-th element. After some
algebraic transformations we arrive at

H k; (61)

kD = .
ZA Lk.k,.. .k, k. ..k,

According to previous consideratlons, the sensitivity of effective parameter k“® with respect to
the coefficient k;, j—l .,N can be calculated generally as

ak(cﬂ‘) Hk nk (ZAI klk k l(x+l )
_ =1 j+l E
ok,

2
' (ZA 1 k k | |+l kn)

n j-1 n
kiki(ZAilik,k2 kK k, ALK,k kg knj
j]

i=1 j+1

(62)

i=1

2
(ZAI k ke kK- kn)
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while geometrical sensitivity with respect to the cross-sectional area A as

Sk e _ li:lIki(ljklkZ'“kj_lkj“...kn)

oA " T (63)
3 (ZAilik,kz...ki_,km...kn)
i=1
Analogously, geometrical sensitivity with respect to I; is obtained as
D E[ki(Ajklkz...k,-_,kj+l...kn)
=t (64)

al, n 2
ZAiliklkz...ki_lkm...kn)
i=]

It should be underlined that the equations obtained above can be incorporated in 1d FEM
formulation for elastostatics as well as heat conduction problems both in deterministic and
stochastic computational analyses. These equations are rewritten for illustration in the case of
the two-component composite with the RVE presented in Fig. 2.

Fig. 2. Two-component composite bar

The homogenization procedure give the effective conductivity as

geo - Kiky
4Alk, +Alk, ’ (65)

while corresponding sensitivities are obtained as

ok 4k} ok ™ k?
*, Al(4k, +k,)* " ok, ) Al(4k, +k,)? (66)
as well as geometrical sensitivities in the following form:
ok*n k,k, S kk,
oA A%N(ak,+k,)’ a  AI(4k, +k,) 67)

The general result of that analysis is intuitionally clear - increasing of structural
geometrical parameters results in decreasing of the effective parameter value (negative
derivative sign) and vice versa. Analogously it is observed that increasing any heat conductivity
coefficient of composite components, the increase of effective homogenized parameter is
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obtained. Quantitative verification of the most decisive parameter depends on interrelations
between particular material and geometrical characteristics and may be studied further in
details.

8. Concluding remarks

The sensitivity analysis of the heat conduction homogenization problem introduced in
the paper may be applied for any linear potential field problem - irrotational and incompressible
fluid flow, film lubrication, acoustic vibration as well as for electric conduction, electrostatic
field, electromagnetic waves. To use the results presented in the paper to homogenization of
another engineering field problems, the well-known field analogies may be used introduced to
transform the heat conductivity coefficients computed to another physical field parameters, cf.
seepage permeability, shear modulus, electrostatic permittivity or electric conductivity.

Using all equations posed above we can introduce the incremental description of the
structural sensitivity analysis for elastostatics and linear potential field problems as well as
elastodynamics and thermodynamics which may find an application in some further composite
materials analyses - deterministic as well as stochastic [13,15].

Considering the assumption that the scale factor between the periodicity cell and the
whole composite structure tends to O and, on the other hand, that this quantity in real
composites is small but different from 0, the sensitivity of effective characteristics to this
parameter are to be calculated next starting from the so-called micro-macro approach [22]. To
carry out such analysis, the scale parameter has to be introduced in the equations describing
effective quantities and next, the influence of  relating composite micro- and macrostructure
may be shown. On the other hand, the sensitivity of the effective characteristics of the
composite to the external shape of the RVE as well as the shapes of its components can be
studied.

The stochastic sensitivity of the effective elasticity and conductivity tensors can be
computed starting from equations posed above using generally two different approaches:
Monte-Carlo simulation technique which can be formulated on the basis of the sensitivity
approach presented here and the Stochastic Finite Element Method (SFEM) [17].
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Notation

C®  effective elasticity tensor

h design variable vector

kP effective heat conductivity tensor

| ") stiffness (conductivity) matrix

d; Kronecker delta

®ia, Ho shape functions

strain tensor components

stress tensor components

homogenization function for elastostatics
homogenization function for heat conduction
the Representative Volume Element
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