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Abstract

The paper is concerned with problem of active stabilisation of rotating shafts by making use
of piezoelectric elements and their effect on non-linear response of such systems, ie. on
bifurcating vibration that appears near the critical threshold. Piezoelectric elements serve in
the system as sensors measuring internal bending moment in a given cross-section of the shaft
and actuators producing bending moment out of phase with respect to the measured moment
and in accordance with a specially devised control strategy. The purpose of incorporating
piezoelectric elements is to enlarge domain of stability of rotating shafts; i.e. to increase the
critical rotation speed at which dynamic stability is lost and self-excited vibration occurs.
Self-excitation observed in shafts, in terms of mathematics, consists in bifurcating of the static
equilibrium position into an oscillating state representing in fact either stable or unstable limit
cycle. Bifurcation of a static solution into a periodic one is called Hopf’s bifurcation. In
rotating shafts, it can appear due to presence of internal friction in material they are made of.
Internal friction can destabilise such systems when subjected to permanent energy supply
maintaining constant rotation speed. It is manifested by occurrence of additional rotary
motion of the shaft when the angular velocity becomes sufficiently high. The additional
precession can be of soft or hard character, depending on type of bifurcation observed in the
system. Application of piezoelectric elements is expected to affect character of the self-
excited vibration, as terms corresponding to their action are present in the non-linear part of
equations of motion. The analysis proves that stabilisation method based on piezoelectric
elements strongly effects near-critical vibration of rotating shafts as it makes the bifurcation,
in vertically rotating shafts always supercritical, subcritical if only gain factor in the control
system is great enough.

1. Introduction

The last several years have been characterised by an animated interest of scientific
researchers and engineers in the so-called smart materials and structures that in
contradistinction to classical ones can adapt their properties to varying operating conditions
according to a given algorithm of controlling. Smart systems combine mechanical properties
with non-mechanical ones, most often with electric, magnetic, thermal, or sometimes, optical
fields of interaction. The most popular smart structures employ elements controllable by easy-
to-transduce electric signal. Predominantly, piezoelectric elements made of lead zirconate
titanate or polyvinylidene fluoride are applied.
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The present paper examines dynamics of such a smart mechatronic system, in which the
mechanical part is represented by rotating shaft and the electric one is posed by piezoceramics
(PZT) elements attached to outer surface of the shaft. The purpose of making use of the
piezoelectric elements is to actively stabilise the shaft; i.e. to increase critical angular velocity
at which dynamic stability is lost and the shaft undergoes self-excitation. Appearance of self-
excited vibration in rotating shafts results from presence of internal friction in material of the
shafts. The internal friction leads to additional precession performed by the shaft in the
critical point. Mathematically, the shaft exhibits Hopf's bifurcation — static equilibrium
position evolves into a periodic solution (limit cycle). This phenomenon was thoroughly
studied by Kurnik [1], who also investigated effect of other factors on the dynamic stability of
rotating shafts and their non-linear, near-critical behaviour [2, 3]. This paper takes up the
problem of stability of rotating shafts enhanced by making use of piezoelectric elements
introduced to the system. Concept of piezoelectric stabilisation has been quite well recognised
in beam-like systems, just works by Tylikowski [4] and Pietrzakowski [5] to mention. Kurnik
and Przybylowicz [6] examined similar approach based on control with proportional and
velocity feedback towards a system with non-conservative load. In each case, the main
intention was to actively damp or stabilise those systems. In the present paper, the goal
remains the same, yet this time special emphasis is put on non-linear analysis. Near-critical
behaviour of the shaft is of main interest. Derived equations of motion indicate that
coefficients describing active stabilisation realised by the piezoelements appear next to the
non-linear term. Moreover, these terms do not vanish for zeroed bifurcation parameter
(angular speed) what satisfies one of the necessary conditions of Hopf’s theorem. Application
of piezoelectric stabilisation is the expected to affect the near-critical of the rotating shaft. In
the considered model the shaft rotates in a vertical plane (or horizontal with gravity forces
neglected). In such a case, the shaft is known to exhibit always supercritical bifurcation — a
safe one as amplitude of the self-excitation grows slowly with increasing angular speed of the
shaft [7]. Additional stabilisation introduced to the system can change the situation by
creating possibility of appearance of subcritical bifurcation — much more dangerous one,
being in fact a catastrophic loss of stability, where even a slight disturbance below the critical
threshold makes the shaft jump onto the limit cycle of high amplitude (first limit cycle in this
case is orbitally unstable). The paper is to discuss conditions in which such a situation takes
place, if at all.

2. Assumptions and model of the system

Model of the considered system consists of a flexible simply supported shaft of length
L, stiffness EJ, mass per unit length p4 having piezoelectric elements glued to its outer
surface. The piezoelements

have length [, , and are =

placed between coordinates -
x,, X,, see Fig. 1. Perfect
attachment is assumed in the b
model (no gluing interlayer
taken into account). The shaft L X .
rotates with a constant L

angular velocity @, and - >
gravity force is neglected. Fig. 1. Model of the shaft
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This means that the initial equilibrium position of the shaft is trivial. For the thus formulated
model equations of motion are [6]:
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where:
M, = Elk, + Bk, + ok, )+ C,(x,,x,)

k 2
M, = EJ(k, + Bk, - Bok, )+ C,(x,,x,)

where k, and k, stand for the curvatures of the shaft in x -y and x -z planes, respectively,
C, ,(x,,x,) denotes additional bending moment introduced by the piezoelectric elements, S

is the time constant of the Kelvin-Voigt model reflecting presence of the internal friction in
the shafts material, and ¢ is coefficient of external damping. The piezoelectric elements work
in the following way: the sensors measure internal bending moment appearing in transversely
vibrating rotor and send the corresponding electric signal to actuators after appropriately
programmed transformations in the electronic unit. The actuators, according to the converse
piezoelectric effect, produce bending moment resulting from longitudinal elongation and
contraction of the piezoelements situated in opposite sides of the rotor surface. The thus
generated moment is to oppose the internal bending moment appearing in the rotor cross-
section. In order to measure and generate the bending moment during rotation a segmentation
of the sensing and actuating elements is required. This segmentation should be dense enough
to localise precisely the plane in which vibration initiates.

[ | il

1

Fig. 2. Shaft with glued piezoelements and its cross-sectional view

By making use of constitutive equations describing the direct and converse piezoelectric
effect, see Nye [8], one can find explicit expressions for the bending moments developed by
the piezoelements C,(x,,x,) . They are as follows [6]:
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where (.) can be completed with either y or z transverse displacement of the shaft. In
equation (3) the following denote: E,, — Young’s modulus of the piezoelectric material, dy,
~ its electromechanical coupling constant (dy, =170x10™? m/V), h, - thickness of the
piezoelements, €,€,, — their absolute dielectric permittivity, k, — gain factor applied in the

control system, r —radius of the shaft. As the piezoelectric sensors and actuators do not cover
the entire length of the shaft but placed in between the coordinates x, and x, the Heaviside
function H(.) is used in equation (3). Details of origin of formula (3) are given [6].

3. Domain of stability

In order to investigate stability of the considered system equations of motion (1)
completed with (2) and (3) should be transformed first into a set of ordinary differential
equations by means of orthonormalising discretisation. Having this discretisation done

[ LUFEw ), dAF@,w, 0} FG) dx =0, i=1,2 @

being based on the first eigenmode F (x)=sinELx— with w () and w,(t) arbitrary time

functions, and where L {.} denotes the right-hand sides of equation of motion (1) one obtains
the following expression:

u=f(u,w,k,) (%)

where u =[u,,u,,u,,u,]", and u, =w,, u, =w,, u; =w,, u, =w,. Linear approximation
contains matrix A, u = A(w,k,)u, on the grounds of which one can examine stability of the
solution of equations (5). The gain factor k, in parentheses in A = A(w,k,) is to underline

the presence of terms
describing action of the

3.85 \Q Im{r} piezoelectric elements in the
linear approximation. Appli-

*g 4 cation of the Hurwitz criterion
§.75 S & leads directly to characteristic
— A equation of the fourth order

9.7 activation. C Ny 3, =0. Four complex and
9.65 ;: ~. conquate roots . constituting
~ solution of this equation

s.6| Re{r} 7B decide about stability of the
=0.01 0.005% o] 0.005 considered system, to be

precise the root of the greatest
* real part decides about it. In

Fig. 3 a blow-up of the
diagram showing trajectory of the deciding eigenvaule is presented. When the control system
is disabled the decisive eigenvalue is placed at the point O for @ =0. Increasing rotation
speed makes the eigenvalue move towards point 4, at which it intersects the imaginary axis.
This means loss of stability. Flutter-type self-excitation occurs with the initial vibration

Fig. 3. Trajectory of the eigenvalue for disabled and
enabled control system
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frequency 2, equal to ordinate of the intersection point. There are then two possibilities:
further increase of the rotation speed develops the thus originated vibration (trajectory tends
to point B) or the control system can be enabled what shifts the dashed line (see Fig. 3)
towards left (point C in the continuous line). This shift (for a fixed @ at @, ) means

stabilisation as the real part of the decisive eigenvalue becomes negative again. The goal is
reached — desired stabilisation has been achieved.

4. Non-linear approximation

Analysis of the linearised system has revealed promising results. Stability effect has been
obtained and the method seemed to be only limited by dielectric and mechanical strength of
the piezoelements themselves. Admittedly, linear analysis does not explore the problem
thoroughly. The question is if ever-supercritical bifurcation observed in shafts without
stabilisation remains supercritical when stabilised or it can become subcritical in certain
conditions. Moreover, in what conditions. To answer these questions it is necessary to
formulate a non-linear approximation of equations of motion (5). By assuming that the system
is only geometrically non-linear and the curvature is reflected by a power series truncated at
terms of the third order, i.e.:

2 2 2 2
2] D]

one obtains the third order non-linear approximation:
PAYy 4V, +EIY e =159 10’ =8V Ve =3V + B ot =V oV

=3V VeV =V VeV x =9V V¥ =V Y sxV oot =V e Y )+ BOZ o +
=1 _Sz,)mz,x,2 + O.SZ,J(my_n,2 B2 T e ™ 32'”3 + V.Y 21 Y £ C, (2 x5 )0+

+0'5y,x2 +Cy,x(x1’x2)y,xy,xx]=0 (7)

2 3 2
pAz, +cz, +EJ[z,, -15z .2z, -8z,z, 2z -3z +B(Z 0y =2 ea?: t+

2
-3z2,z,2,..-9,2.2 -92.2z 2z . -922.2 .-92.2.)- B et

X xxt“ xxx g 0 e o (]
~15Y oV +0.5Y 2 2= ¥ v -3y vz 2y I+ rk,IC, L (x,x,)(1 +
#0527 +C,,(%,1,)2,2,,]=0
Non-linear equations of motion (7) can be then transformed into ordinary differential

equations by application of Galerkin’s discretisation (4) and introduction of the new variables
., ... u,. Having this done equations (7) can be implicitly written down as:

u=f(w,0,k,)=Alw,k,)u+Nu,w,k,) (8)

where T =[f,f,, /s, f,] represent right-hand sides of the discretised equations of motion
where the linear and non-linear parts were separated. The angular velocity @ and the gain
factor k, were inserted into parentheses to emphasise that both linear and non-linear

spproximation depends on those factors. The explicit form of the matrix of the linear part is
given as:
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0
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@Yy (us” =)+ (ks
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3
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(13)

3.5 3 4 ( 3 3 X )
Hy —g{ft ——En y4\cos’ T x, —COS” £ x| \COST X, —COST X,

5. Bifurcating solution

The derived non-linear approximation of the equations of motion enables one to construct
a bifurcating solution describing properties of self-excited vibration appearing in
neighbourhood of the critical point @ = @, . The bifurcating solution is to be then formulated
in a convenient manner described by Kurnik [6] and based on the approach by looss and
Joseph [9]. The first approximation of the periodic, bifurcating solution has the following
form:

u(e,t) = 26 Re{ge’”’} (14)

where ¢ is norm of the solution (measure of the bifurcating vibration amplitude) and 2
frequency of the bifurcating vibration. These two quantities are defined by:
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.(2=.(20+%.(22£2 and g= 22" % (15)

where £2, is the initial frequency of the self-excited (bifurcating) vibration, discussed in the
linear analysis and £2,, @, — coefficients to be determined. According to [6] they are:

Re =, d Im{r} 1 -

=—_—, ,Q =@ +—Im.5 16

“r 7T dRelr) 1T e |, 3 0
dw
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As the non-linear part of equation (7) lacks terms of the second order, see also equation (12),
the term =, in (16) is then given by:

S 700 21,0,0,.7,)
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where f, are the right-hand side functions of equations of motion.
Definitions (16), (17) as well as the bifurcating solution (14) include vectors denoted
by q and q°, which are the eigenvectors corresponding to the following eigenproblems:

{A@,.k,)-i2]1}q=0 (19)
and the adjoint one
AT(@,.k,) +i2,1}q" =0 (20)
After simple transformations one finds the vectors q, q’ to be:
_ i _ _ G 5
0 g 1
—ay =42, ; _9
q= ———au +1£2, a, 21
2
azz-Qo2 —ay — 4
L ay _ L an .
a0, +20," ] [0, +a, -ay’ ]
ay , ay
q=4| 2% -2 |iiq, Bu .D 2)
a,; ax
—ay o
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where the complex constant D is chosen in such a way, so that the orthonormalisation
condition <q,q'> = Ziq,t}] =1 is fulfilled. This requires that the constant D must be:

. I —
q, t9,9,+%+9:9;+4,

(23)
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To complete constructing of the bifurcating solution one needs to find the derivatives ¢, in
(17). They are as in the following:

Crz3 = —Cqy =64
Coiy =Coiyt =Copy = Capy =Caz =Cyy =244, (24)
Cn =Co31 =Canz = ~Capzy = —Cgi3 = —Cayy = —244,

The .last problem related with the bifurcation analysis is the problem of orbital stability of the
obtained bifurcating solution. The solution is either stable or unstable, depending on sign of
the Floquet exponent o . The exponent is defined by:

dRe{r}
@

w,e” +0(g”) (25)

ll)”_

o(g)=-

where O(g*) denotes the terms corresponding to higher orders of ¢ (negligible with respect

to those of £2). When o <0 then the bifurcating solution respecting in fact a limit cycle is
orbitally and asymptotically stable (supercritical bifurcation), when o >0 it is unstable
(subcritical bifurcation).

6. Results of numerical simulations

On the grounds of the developed bifurcating solution numerical simulations have been
carried out. The main purpose was to evaluate coefficients appearing in the series describing
bifurcating vibration and responsible for evolution of its frequency and amplitude with
growing angular velocity of the shaft. Another important factor highly effecting stability of

the bifurcating solution is the

ks derivative of real part of the
TN decisive eigenvalue in the critical
g_m NG point: (Re{r(®,,)}),- It has tun-
i ed out that (Re{r(a)c,)}),w remains

4o ~ ..

g_sm N positive for any value of the
800

-700

bifurcating parameter @ (also for
~ values far from the critical
800 threshold @, ) and the applied

] 0,05 0,1 0,15 0,2 0,25 = .
pain factor re gain factor k,. This means that

Fig. 4. Bifurcation parameter @, vs. gain factor ¥, = &, stability of the bifurcating solution
depends only on sign of the
coefficient @, . A diagram presenting behaviour of @, versus the gain factor £, is shown in

Fig. 4. One can clearly see that only very small value of k, secures stability of the bifurcating
solution (k, < 0.01). This is a disadvantageous situation where on the one hand the rotating

shaft becomes more stable but character of loss of the stability dramatically changes on the
other. In terms of engineering practice this means that the shaft undergoing active stabilisation
by piezoelectric elements should be protected from excessive growth of the rotation speed so
that to avoid contact with direct neighbourhood of the newly obtained critical threshold. That
would threaten the system with subcritical bifurcation, a ver dangerous case when the rotor
equilibrium position jumps over the first unstable limit cycle to rest on the successive and
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stable one, but of much greater amplitude. The stability is lost in a catastrophic way, and it
can appear even below the critical speed. Obviously, the critical speed itself is increased.

In Fig. 5 the bifurcation
coefficient €2, versus the applied gain
factor k, is shown. It rules behaviour
of frequency of the self-excited
vibration near the critical point. First
approximation of the bifurcating
solution enables obtaining only the
linear function expressing development
of this frequency for a narrow region of
variability of . Exemplary fre-
quencies of the bifurcating solution
corresponding to some gain factors k,

are presented in Fig. 6.

0,005

£2: 0

0,15 0.2 025

gain factor

0,05 01

Yd

Fig. 5. Bifurcation coefficient £2, vs. gain factor y, = &,

Calculated values of @, have enabled determination of amplitudes of the bifurcating
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z y¢=0.25 | ~]\ //
g o 7 : >
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rotation speed @ — D«

Fig. 6. Frequency of the bifurcating solution

solution. In the case of super-
critical bifurcation, observed for
slightly stabilised shafts, the trivial
solution remains stable until w,, is

reached and then self-excited
vibration occurs with amplitude
parabolically growing with @ (see
the continuous line denoted by
y.=0, o,=640 in Fig. 7).
Greater gain factors make the
bifurcation  subcritical,  which
means that a small disturbation due
to an external mechanical stimulus
exceeding the ordinate of a given

dashed line shown in Fig. 7 make the static equilibrium position bifurcate into the successive
limit cycle of higher amplitude (not marked in the figure — this requires the second
approximation of the bifurcation solution to be determined). Such a situation can happen even

for @ below w_ what is especially dangerous.
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Fig. 7. Amplitude of the bifurcating solution
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7. Concluding remarks

The applied method of active stabilisation of a rotating shaft by making use of
piezoelectric elements made of lead zirconate titanate (PZT) has proved to be an efficient tool
in shifting critical rotation speed towards greater values. As it is shown in Fig. 3 switching on
the control system makes trajectory of the decisive eigenvalue move leftwards, i.e. where real
parts are smaller (negative). Non-linear analysis discloses however, that application of
stronger gain factors endangers the system with subcritical bifurcation. This entails hard self-
excitation and sudden growth of the vibration amplitude in neighbourhood of the critical
speed, even for @ < w,, . Thus the system is stabilised by increasingly growing gain factor on

the one hand but on the other the system should be kept increasingly far from the newly
obtained critical threshold to avoid hard self-excitation.
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