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Abstract

The dynamic stability problem is solved for thin cylindrical shells compressed
by time-dependent deterministic or stochastic membrane forces using three com-
mon thin shell theories, namely Donnell’s, Love's and Fliigge’s shell theories.
The asymptotic stability and almost sure asymptotic stability criteria involving
a damping coefficient and loading parameters are derived using Liapunov’s direct
method. The present paper compares effects of the use of the various shell theories
on the dynamic stability regions.

Introduction

Dynamics of laminated composites have been an object of considerable atten-
tion over the past quarter of century. Numerous papers are available on lami-
nated plates and shells under constant and periodic forces. The first analysis of
the parametric instability of cylindrical shells subjected to periodic deterministic
membrane forces with a constant frequency is due to to Bolotin [3]. Birman [2]
published a study on the dynamic stability of unsymmetrically laminated rectan-
gular plates subjected to in-plane harmonic forces using a single model approach of
transverse displacement. Instability regions as functions of the load amplitude and
frequency were obtained analyzing the Mathieu differential equation. All papers
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have applied finite dimensional or modal approximations in analysis of vibration
and stability. The Liapunov direct method is a quite different approach and can
be successfully used to analyze continuous systems described by partial differential
equations. A significant advantage is offered by the method in that the equations
of motion do not have to be solved in order to examine the stability. The Lia-
punov functional method together with Donnell’s shell theory were utilized by the
present author to determine the stability regions of antisymmetrically laminated
cross-ply cylindrical shell under time-dependent membrane forces (Tylikowski [9],
[10)). The stability analysis of structures under time-dependent forces strongly
depends on a dissipation energy. The simplest model of viscous damping with
constant coefficient was commonly assumed in previous papers despite the fact
that there are another more sophisticated theories of energy dissipation (see eg.
Siu and Bert [8]) according to which different engineering constant have different
dissipative properties.

The literature search showed that a study comparing the instability regions gen-
erated using Donnell’s, Love’s and Fliigge’s shell theories have been done by Lam
and Loy [7] for free vibration of a rotating multi-layered cylindrical shell and by
Ng and Lam [8] for the dynamic stability of thin, laminated cross-ply shells under
the axial force with a constant and periodic components.

In the present paper three shell theories for the dynamic stability analysis of a
thin-walled laminated cylindrical shell are compared. They are the Donnell’s,
Love’s and Fliigge’s theories for thin cylindrical shells. The plates are destabilized
by compressive deterministic or stochastic in-plane forces. The viscous model of
external damping with constant coefficient § is assumed. Using the appropriate
energy-like Liapunov functional sufficient conditions for the asymptotic stability
and the almost sure asymptotic stability of undeflected form of the shell are de-
rived.

Problem Formulation

Let us consider a closed, elastic, cross-ply laminated cylindrical shell of radius
a, length £ and total thickness h, a >> h, £ >> h. The shell consists of an
even number of equal thickness orthotropic layers antisymmetrically laminated
with respect to its midsurface from both the geometric and the material property
standpoint. The Kirchhoff-Love hypothesis on nondeformable normal element is
taken into account. The z-axis is taken along a generator, the circumferential are
angle is denoted by ©. The z - axis is directed radially inwards. The components of
the displacement of the shell with reference to this coordinate system are denoted
by u, v and w in the z, © and z directions respectively. The shell consisting of
an even number n of elastic orthotropic layers antisymmetrically laminated about
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its middle surface from both a geometric and a material property standpoint is
compressed by the time-dependent force f. The governing partial differential
equations are given as [1]
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1 1 1
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where &, & are tracers employed to unify the equation of motion from the three
shell theories and p is the mean density of plate material. Membrane forces and
moments are expressed by the displacements as follows [1]
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in which the extensional, coupling and bending stiffnesses are denoted respectively
by Aij, Bij, Di;. Tracers 6;, i = 1,...,5 and {3, (2 used to unify the three shell
theories are given in Table 1. It is necessary to notice that due to the antisym-
metrical cross-ply configuration A = Az = 0, Byjg = Bog = Bgg = Biy = 0,
Dig = Dyg = 0.

The reduced in-plane stiffnesses Qij of an individual lamina can be calculated us-
ing the lamina principal material properties E;, E2, G12, V12 and the lamination
angle 0, /2 [1].

The shell is assumed to be simply supported along edges z = 0,£. The condi-
tions imposed on displacements and forces for simply supported movable in the
tangential direction to the edge of the shell have the form

w = 0 mg =0 u=20 Ngy, =0 at z=0,a
(12)
w = 0 my, =0 v=20 nyy, =0 at y=0,0b.

We assume that the solution of equations (1) - (3) exists and belongs to an ap-
propriate Hilbert space. The purpose of the present paper is to derive criteria for
solving the following problem: will the deviations of shell surface from the unper-
turbed state (equilibrium state) be sufficiently small in some mathematical sense
in the case when membrane forces are time-dependent. The shell dynamically
buckles when the membrane forces get so large that the plate does not oscillate
about the unperturbed shell state and a new increasing mode of oscillations occurs.
To estimate a perturbed solution of equations (1) - (3) we introduce a measure of
distance || . || of the solution of equations (1) - (3) with nontrivial initial conditions
from the trivial one. We shall say that the trivial solution of equations (1) - (3) is
almost sure asymptotically stable if a measure of distance between the perturbed
solution and the trivial one tends to zero with probability one as time tends to
infinity

P(lim || w(,t) |=0)=1. (13)

In the deterministic case the trivial solution is called asymptotically stable if for
all solution of equation (1) - (3) with arbitrary initial conditions a measure of
distance between the perturbed solution and the trivial one tends to zero as time
tends to infinity
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Shell theory | Donnel | Love | Fligge
& 0 0 1
& 0 1 1
G 0 1 1
0 0 1 1
61 0 1 0
&2 0 0 1
03 0 2 1
04 0 0 1
35 0 0 1

Table 1. Values of tracers for Donnell’s, Love’s and Fliigge’s shell theories

o
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3 a/l=1 Instability o
25 i sl
2 R il 7" Fliigge
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Fig. 1. Stability regions for different shell theories
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Jim [l w(.9) =0 (14)

In the present analysis the direct Liapunov method is proposed to establish criteria
for the asymptotic and the almost sure asymptotic stability of the unperturbed
(trivial) solution of antisymmetrically laminated cross-ply shells treated as the infi-
nite - dimensional system subjected to the membrane deterministic and stochastic
forces with the known probability distribution.

Stability Analysis

In order to examine the stability of trivial solution © = v = w = 0 we construct
the Liapunov functional as a sum of modified kinetic energy and the elastic energy
of the shell [9]

1 £ 27
V= 5/ / (u?t + 02 +w? +2B(uug +vvy +ww,) + 26%(u? + 07 + w)+
o Jo

1 1 1
—Mew - — Mo ol (wee—01v,0+8w)—(Mze+Mez) = (—2w,z0+03v,.— 55411,9) +

1 1
+Nzu g + Ne%(v,e +w) + E(N’e + Neg)(vz + Eu,e))ada:d@ (15)

The functional (15) is called the best as it gives the greatest almost sure stability
domain in the class of twoparameter functional (vy, d)

1 4 27
Y=y / / (u% + 02 +w? +y(uug + ) + 6 + 0% +w?) = Mow oo +...)dQ
0 JO

for the ergodic Gaussian forces.

The functional (15) is positive-definite as the terms of the integrand can be re-
arranged as a sum of squares, and the measure of distance can be chosen as the
square root of functional

| w(., ) l|l= V2. (16)
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If the forces acting in the shell middle surface are stationary and continuous with
probability one the classic differentiation rule can be applied to calculate the time-
derivative of functional (15)

dv
= =-28V+u (17)

where an auxiliary functional U is defined as follows

4 27
U= % /0 /0 (ZBZ(uu,t +ovy +ww,) +26%? +0? +wd)+
+&(uy + ﬁu)g(v,xe +we)+&(ve + 5v)£‘u,ze + (we + ﬁw)fw,”)dﬂ. (18)

In order to find a function ) satisfying inequality
U<V (19)

we look for a stationary point of functional U — AV, which is equivalent to inequal-
ity (19) for the second order functionals. Solving the Euler auxiliary variational
problem §(U — AV) = 0 we can find the appropriate function A. In the case of
simply supported edges described by the boundary conditions (12) there exists a
solution of equations (1) - (3) in the form of infinite series

u(z,0,t) = Z an(t)cos%zzcosn@

m,n=1

v(e,0,t)= 3 Gmn(t)sinﬂ;zsinn(-) (20)

m,n=1

o0
w(z,0,t) = z Hmn(t)sinlne—wrccosn@

m,n=1

Therefore, their time-derivatives have the form

o0
uy(z,0,t) = Z Rnn(t) cos %;zcosn@

m,n=1



288 ; Andrzej Tylikowski

(e <]

ve(z,0,t) = Z Smn(t)sianﬂxsinnG (21)

m,n=1

[oe]
wy(z,0,t) = Z Tinn(t) sin %zcosn@

m,n=1

where the infinite sequence of functions Fiun, Gmn, Hmny, Bmn, Smn, Tmn, m,n =
1,2, ... is not known.

Due to the orthogonality of series present in equations (20), (21) the value of
functionals can be calculated as a sum of the suitable quadratic terms

Ve ¥ Vax (22)
m,n=1

U= i Upmnn (23)
m,n=1

where Vi, and Up,, are calculated from formula (15) and (18) for a single term
of the expansion, respectively. If A,,,, which satisfies a single term inequality, is
known

d];;m 4 26V.n = Usnni < AenriVinws (24)
then the following chain of inequalities is true
) oo

Therefore, the function A can be effectively calculated. Substituting the mn-th
terms of expansions (20)-(21) into inequality (19) we obtain the second order
quadratic inequality with respect to the six variables Fiun, Gmn, Hmn, Rmn, Smn,
The inequality solution is equivalent to finding the smallest root of the six-th order
algebraic equation.

Using a property of function A in equality (19) leads to the first order differential
inequality the solution of which has the form

V(t) < V(0)exp [— (ﬂ - % /Ot A(s)ds) t] ; (26)

;
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Therefore, the sufficient criterion of the asymptotic stability has the form

t
B > lim s A(s)ds. (27)

t=oo t J,

If the process f satisfies an ergodic property guaranteeing the equality of time and
assemble averages with probability one the sufficient condition of the almost sure
asymptotic stability can be written as follows

B2 EX (28)

where E denotes the mathematical expectation.
Numerical Results

Inequality (28) gives us a possibility to obtain minimal damping coefficients
guaranteeing the asymptotic and the almost sure asymptotic stability called crit-
ical damping coefficients. A domain where damping coefficients are greater than
the critical damping coefficient is called the stability region or the almost sure
asymptotic stability region. The stability regions as functions of loading variance,
damping coefficient, plate aspect ratio, lamination angle, constant component of
in-plane forces and properties of plate material are calculated numerically using
an approximate method. First, discrete values of force f are chosen, the sixth
order algebraic equation is solved, the largest value A is determined and the ex-
pectation is calculated numerically integrating the product of A by the probability
density function of loading. This is accomplished for various values of parameters
by choosing the variance and varying the damping coefficient until inequality (28)
will be satisfied. Numerical calculations are performed for the Gaussian process
with the mean value of force f and variance ¢ and for the harmonic process with
an amplitude A. In order to compare both processes the variance of harmonic
process o2 = A%/2 is used.

The almost sure asymptotic stability regions of cylindrical two- layered cross-ply
shell , unidirectionally loaded by the Gaussian process for the graphite-epoxy ma-
terial are shown in Fig.1. It is seen that stability regions situated under curves
and calculated using Donnell’s, Love’s and Fliigge’s theory differ substantially.

Conclusions

The dynamic stability of thin, laminated cylindrical shells under time-dependent
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deterministic or stochastic axial force uniformly distributed along the shell edge
has been examined using three different shell theories - Donnell’s, Love’s and
Fliigge’s. Using the partial differential equations of motion, the direct Liapunov
method without finite dimensional or modal approximations the stability regions
have been obtained. It has been observed that the stabilty regions obtained by
Donnel’s theory are significantly different from those obtained from Love’s and
Fliigge’s theories which show a rough egreement. The stability regions do not
change qualitatively in going from the Gaussian process to the harmonic one, but
the Gaussian loading needs the greater damping coefficient that the harmonic
loading.
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