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ABSTRACT

Closed form solutions for free vibrations of a stepped beam of two parts are given.
Each part is of rectangular cross-sectional area. The parts may be of uniform cross-
section and/or tapered with both equal and different tapered ratio in the horizontal and
vertical planes. General constraints at the ends are possible at the three ends of the
beam. The equations of motion of the beam are given in terms of trigonometric
functions, hyperbolic functions, and the well known Bessel functions. Various special
cases are deduced from the present solution and showed complete agreement with
previous closed form solutions for these special cases.
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1. INTRODUCTION

Several works dealing with the transverse vibrations of beams with uniform and
tapered cross-sections have been published proposing both approximate and closed
types of approaches.

With the solution based on Bessels functions, Lee [1] dealt with a cantilever with a
mass at one end. The solution of the equations of motion are given in terms of Bessel
functions and he presented tables of frequencies for combinations of clamped, pinned
and free boundary conditions. Sato [2] studied the transverse vibration of tapered
beams with linearly varying cross-sectional area in the presence of an axial force acting

on the beam. Craver and Jampala [3] studied the vibration of a linearly tapered
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cantilever beam elastically constrained at an arbitrary position along the length of the
beam. The beam has a rectangular cross-section with equal taper in the horizontal and
vertical planes and the constraint is a translational spring. The natural frequencies were
given in tabular form. Auciello [4] studied the free vibrations of tapered beams of
rectangular cross sections. The study is extended to beams made up of two sections
with different cross-sectional variations. El-Din et al[5] presented a closed form
solutions for the transverse vibrations of a uniform beam with a tapered cantilever.
Sanger [6] considered a class of non-uniform beams, the geometry of which made it
possible to express the solution in terms of Bessel functions of order n. For the types of
non-uniform beams which do not admit solution in terms of Bessel functions, Wange
[7] proposed a solution based on hypergeometric functions for the transverse vibrations
of a class of non-uniform beams. A direct solution based on the method of Frobenius
was suggested by Naguleswaran (81

Several numerical solutions have been published, mainly for cantilevers with a
linear taper. Among these are those of Rao [9] (Galerkin), Carnegie and Thomas [10]
(finite difference), Krynicki and Mazurliewicz [11] (Rayleigh-Ritz), Klein [12]
(Rayleigh-Ritz/finite element), Kim and Dickinson [13] (finite element), and Lee ef al.
[14] (approximating by finite number of step functions).

In this paper, we study the transverse vibrations of a stepped beam of two parts. We
consider three main case studies. In the first case, the two parts are uniform. In the
second, one part is uniform and the other is tapered. In the third, the parts are tapered.
In all cases, a stepped ratio is allowed and the beam is elastically restrained with
translational and rotational springs at its three ends. The solutions of the equations of
motion are given using trigonometric functions, hyperbolic functions and Bessel
functions. The nondimensional frequencies of the beam are given in terms of the cross-
sectional area and the flexural rigidity at the first end of the beam. Various special
cases are given and compared with the solutions of these special cases given in

previous works.
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2. PROBLEM FORMULATION

Figurel illustrates the problem being considered. B L is the length of part (1),

| - B)L is the length of part (2), whereas L is the length of the combined beam.
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Fig. 1: The Problem being considered
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le (i=123) and % g are the constants of translational and rotational springs,
respectively, at the end (7). The beam is of rectangular cross-section of width
h (i=13) and breadth b, (i=13) atend (/). h, and b, are the width and the breadth
of the beam at end (2) from left whereas A, and b, are the width and breadth of the
beam at end (2) from right (2°). 4; = b,4; (i =1,2,2',3) is the cross-sectional area of the
beam at end (i) and /, = b,4; /12 is the moment of inertia at this end. D, = EJ, is the

flexural rigidity of the beam at end (i) where E is Young’s modulus. y = /A /hy isa
width ratio for the beam, a; = h,/h is the tapered ratio of part (1) and a, = hy/ hy, is

the tapered ratio of part (2).
The differential equation for small amplitude, free bending vibrations of the

constrained beam shown in Fig.1, according to Bernoulli-Euler theory, is ;
a2 (a2
< D—y —patdy=0
dx di?
where y is the transverse displacement, x is abscissa, o is the mass !cnsity, and @ is
the natural frequency of vibration. For case study (1), this differential equation is

equivalent to :

4
B by = forcye[0.8] (@

9% (1-1)
92 _yipty, =0 forlye[01-]  (b)

aL

where p4 = pL4a)2(A]/D,), $y=x/L, ¢, =(x-pL)/L, y and y, are the transverse
deflections of the two parts of the beam. For case study (2), the equations of motion

take the forms :

d 4)’1

L-p'y =0 for, €[0,4]  (a)
d@4 & 2-1)
44 Yy 3 ay 4
m +2(ny + 2)15 -q,, =0 forn, €[l,a,] (b)

dn, d772 drj
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where 7, =1+ Oy (x- ALY/ L, Oy =(ay-D/(1-B) , ¢, =w/10,| and n, =1 if

&, =by whereas n, =2 if by/by =a,. For case study (3), The equations of motion

-
d' d? i
5 );1 +2(m + 2} y31 +6nn} J;‘ gy, =0 form €(l,] (a)
d:71 d7371 dn; (3-1)
y d d?
W2+ D 2 bt 22— gy, =0 formy eflay]  (b)
dm, dm dmy

where 7, =1+Q(x/L) , O, =(ey-1)/B, ¢,=p/| Q| and n, =1 if b, = b, whereas
m=2ifb/b =q.

3. SOLUTION OF THE GOVERNING DIFFERENTIAL EQUATIONS
The solutions to Eqgs. (1-1), (2-1) and (3-1), respectively, can be obtained as :

»(&)) = a,cosh(pd)) + a,sinh(pg))

_ £E < B (a)
+a;cos(pg)) +aysin( pg)) (1-2)
¥:($5) = ascosh(ypd,) + agsinh(3pd,) <6, <1-8 (b)
+a, cos()pg,) + agsin(ppd;) e
»(6) = acosh(pgy) +a; sinh(pg)) 0<4,<pB  (a)
+aycos(pgy) + aysin(pg)) o 7.2
A B N <22 ] IR
2 (1) = b €L,
2 ? + a7l,,2 (2q2 \/7]_2 )+ agK,.2 (242 \/77_2 )
o = a,J,,] (24,%)"’ azYn, (an/a) melley] (2)
i) = B
: +aj, (2q1\/17—, )+ aK, (241 m ) (3-2)
g (rl ) ’7_”2 /2 aanZ (2q2 ‘\/—%)‘F a6Yn2 (2‘12 \/E) n, € [1 a ] (b)
. - 3~
s +ail, (2q2\/%)+ aK,, (2‘12 \/;7;) :

where a,,---,a; are constants and J,Y,|,K are Bessel functions. From equations (1-2),

(2-2) and (3-2), the rotation dy/dx, the bending moment M (= ~Dd’y/dx” ) and the
shearing force S (= —dM /dx) for the three cases illustrated in Fig.1, can be obtained.
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The boundary conditions at the three ends of the beam together with the continuity
conditions at the intermediate end lead to a set of eight equations in the constants

a), -+,ag into the form (c;a; = 0 where i,j=1,2,---,8) and the characteristic equation
3 J €q

‘l ]
of the problem will be (det]c,]‘ = ) This characteristic equation can be solved for the
dimensionless frequencies {p, }for different values of B.7.a,.ay,n,n, and for

different boundary conditions. Also, the effects of the translational and rotational

spring constants kT‘ and kp at the three ends of the beam on the frequencies { D, }can

also be studied.

Let us consider each case study independently;

Case Study (1) :
Referring to Fig.1 and Egs. (1-2), the boundary conditions at end (1) (£, = 0) imply

that :

kg

dy(0) _ - d’y(0) (0= _p LHO)
1 dx _Dl dx2 ? krl}']( ) q &I\

The boundary and continuity conditions at the intermediate end (2)({, = £, £, = 0)

imply that :
dy(B) _ dw,(0)
»(B) = y,(0) , 1T=-‘—
dy(B) d*y(B) . d*»,(0) ¥ @3B . (0
kg, ——==D| - + Sy , ke n(B) =D — -4,
R dx : dx? . dx? £ (A 1 dx a

where &, = D,./D,. Finally, the boundary conditions atend (3)({, =1- ) imply
that :

a,(1-p) _
} dx

where 6; = D;/D, =&, . These boundary and continuity conditions lead to

kg

5D| y2(1 ﬂ) , kTE,V3(l-ﬂ) A y:r] 18)
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Un Uy Uz Uyl 0 0 0 0
Un Up Up Uni0 0 0 0
Ui Uy Uy Uy, ?Uss Uge —U37"Z/_3;
Un Up Uy Uy Uy Uy Uy Uy =8 (1-3a)
Uy Us; Usy Usy E Uss Uss Us; Usgg
Ys_Us Us UsUs Us Usg Ug
00 0 o0 EU75 U Upn Uy
0 0 0 0 (| Uss Ug Ug, Usgg
Uy Uy Uy Uy E 0 0 o0 o
Un Un Up Uyi 0 0 0 0
Uy Uy Uy Uy E Us Uy Uy Uy
orequivalently; Uy U, U, Uy, :' Uss Uss Uys U - (1-3b)
Usy  Usy Usy Uy | Uss  Usg  Us;  Usg
5‘91___'16_2___"_63___’_‘6_4_1_”.@__1‘96__JiéJ--.“f&
0 0 0 0 |:U75 Ue Up Uy
0 0 0 0 Uy Uy Uy Uss
where
Un:‘PCR, » Up =1 » U13=PCR, » Uy =1
Uy =1 , Up= PJCTI » Uy =1 » Uy = —P3CT,} G=a)
Us, = cosh pfB » Usy =sinh pf
Us3 = cos pf s Usy =sinpf
U, =sinh pB » Uy =cosh pB
Uy =-sinpf , Uy =cospf
Us, =sinh pgB + PCy, cosh pp , Usy =coshpf+ pCR2 sinh pg
Us; =—sin pf - PCy, cos pB , Usy =cospf — pCy, sin pfi (14}

Us) = cosh pff - p°C;. sinh pf
Ug; = cos pf - 11’3C'r2 sin pf

us) =Us; — Uy = pCp, cosh pfi
usy =Usy Uy = ~pCy, cos pf
ug) = Ug — Uy, = —P3C12 sinh pf
ugy =Ugy —Usy = —P3C72 sin pf

, Ug, =sinhpf-p’ Cr, cosh pfg

, Ugy =sinpf+ 133CTz cos pfi

s Uy =Usy—Uygy = pCp, sinh pf

» Usy =Usy =Uyy = “PCR2 sin pf

s U =Ugn -Us, = ~P3Cr2 cosh pf
» Ugy =Ugy Uy, = p3CT2 cos pfi
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Uss =-1 , Usg=0 , Uspp=-1, Up=0
Uy =0 s U ==¢ , Up=0 , Ug=-7
Uss =‘7’2P52'CR2 » Hgg=l
Us; =72P52’CR2 , Ug=0
Ug =0 » Uss =7’3P352'CT2
Ug =0 » Ugg ='}’3P352'CT2 (et
uss =Uss —Uys =‘7’2P52'CR2 ) usg =Usg —Uys =7
us; =Us; —Uy =}’2P52'CRz ’ usg =Usg ~Ugg =7
ugs =Ugs —Uss =1 > ugs =Ugs —~Uss =7’3P352'CrZ
ug =Ug —Uy =1 ’ usszUss‘Um=‘7’31’7352'CT2
Us,s = sinhyp(1- B) + pp6;Cp, coshyp(1- f5) W
Use = coshyp(1— B) + pp6;Cp, sinhyp(1— B
Uy = —sinyp(1- B) = 1p83C, cosyp(1- B)
Usg = cosip(1= B)— p3Cp, sinyp(1- B)
(1-44d)

Uss = coshyp(1- B) 7’ p*8;Cy, sinhyp(1 - )
Usg = sinhyp(1- B) -y’ p*8Cr, coshyp(l - )
Ug; = cosp(1— B) -7’ p*8;Cr, sinpp(1- B)
Usgg = sinyp(1 - B)+7° p*8;Cr, cosp(1- B)

D
ThE P Byl

(=12.,3)

The first two rows of (1-3a and 1-3b) represent the boundary conditions at end (1).

Since the part (1) of the beam is Uniform, U ; are used to denote the elements of these

rows. The next four rows (the third to the sixth rows) represent the boundary and
continuity conditions at the intermediate end (2). Since the parts on both sides of this

end are Uniform, U i and u; are also used to denote the elements of these rows.
Similarly, the last two rows represent the boundary conditions at end (3) and U ; are

used to denote the elements of these rows since part (2) is Uniform. The case of a

uniform continuous beam (Fig.2a) is a special case of this case study. In addition, if
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end (2) is free (CR2 — o0 and CTz - oo), the beam will be a simple uniform beam
(Fig.2b) and the characteristic equation can be reduced to :
- pCR, 1 pCRI 1
1 pP’Cr 1 -pCp B
sinh p + pCr coshp coshp+ PCg sinhp —sinp— PCg cosp cosp-— PCp, sinp -
cosh p - p3CT3 sinh p sinh p— p3CT3 coshp cosp- p3C73 sinp sinp+ p3CT3 cosp

(1-5)

which is the characteristic equation of a simple uniform beam. Also, the cases : 4 =1

(Fig.2c) and B = 0(Fig.2d) can be deduced from Egs. (1-3), respectively as :

Uy Up Us Uy Uss Use Usy Usg
Un Un Un Un _, () and |Yes_ Yoo &1 Ues) -0 @) (1-6)
Uy Us; Usy Ugy Usps Uy Uy Up
Usg Un Us Usly, Ugs Ugs Ugs Upgg p=0g-1
203 =

which agree with (1-5).

b (1) 2) € b OIN©) (3)
h Part (1) Part (2) h
Cross-section Cross-section
of the beam of the beam
AL (1-AL
L i
(@ (b)
b (1) ) b ) (3)

h h

Cross-section Cross-section

of the beam of the beam

R e D e ]
L L
(c) (d)

Fig. 2 : Special cases of Case Study (1)
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Case Study (2) :
Referring to Fig.1 and Egs. (2-2), the boundary conditions at end (1) (£, = 0) imply

that :

d’y,(0)
dx3

2
kR dyl(o) =D d yl(O)

1 dx 1 dxz ] kT]y](O) = _Dl

The boundary and continuity conditions at the intermediate end(2)({=8.m=1)

imply that :
d dy, (1
wB=y»0 _y;i_ﬂl - y;; )
7) d? div.(1
kRz —X;(Tﬂl = Dl\i_ Z;gﬁ) + 0y ;xzz( )}
d d*y,( 1 v
- |

The boundary conditions at end (3) (7, = e, ) imply that :

d3 1 d2 )
sz ya(ay) =630 ["%@*‘(Z)(ﬂz +2)0, -—};i—(za—z—:\

(2-3a)

or equivalently;
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Uy Up, Us Uy 0 0 0 0
Uy Uy Uy Uy 0 0 0 0
Uy Uy Uy Uy Ts Ty Ty Ty
Uy U Uy Uy Tis Tis Tas Tus (2-3b)

where the elements denoted by U; and u;; are given by (1-4a,b) whereas the elements

denoted by 7}; and ¢; are given as :

I =-J,,(29,) » he=-Y,,Q2q,)

Iy = —lnz (29,) ) Ty = —an (29,)

Tys = 7Jn2+1(2‘12) ’ Tag = YYn2+1(2‘12)

Ty = —}"n2+|(242) ) Tyg = 7Kn2+1(2‘h)

Tys = 7' p6yCrdp2(20) 5 Tss= “72P52'CR2 Yo, +2(242)
Ty7 = 7> p6yCh,\yy +2(242) ,  Tog =—7"p6yCe,K,,12(202)
Tgs = ‘72P252'CT2 w5, 43(267) — (ny + 2)Q2Jn2+2(2‘h)]2

Ts = 7P 82Cp [PV, 3282) = (2 + 200, 12(29))

T = ‘7’2P2‘52'CT2 [— 1Phny43(292) — (ny + 2)0l,,+2(292)

Tig = ~12P81Cr, oK 2(202) = 0 + DK, 28]

tss = Tss = Tys = =W, 1 (292) - }’2P52'CR2JnZ+2(242)

tss = Tsg = Tag = MY, 11(242) —72P52'CR2Yn2+z(2fh)

ts; = TIs; = Ty3 = Ny 1 (292) = }’2P52'CR2|,.2+2(2‘12)

tsg = Isg — Tyg = =K, 11(292) ‘72P52'CR2Kn2+2(2¢12)

tes = Igs — T35 = J,,, (297) - 7’2}7252'(:T2 [WJn2+3(2‘12) —(mp+ 2)Q2Jn2+z(2412)]
tos = Tgs =135 = Ynz (2g,) - }’2}7252'Cir2 [WYnZ+3(242) —(ny + 2)Q2Yn2 +2(2q, )]
g =Tr =T = |n2 (2g;)- )’21125"2'CT2 [‘ W|n2+3(242) —(ny + 2)Q2|n2+2(26h )}
teg = Tgg — T3y = an (2q,) - 7’217252'CT2 [WKn2+3(2‘J2) —(ny + 2)Q2Kn2+2(2‘12)]

(2-4a)
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Tys =~y 11(205) + P83Cr,Jy 12 (295)

T, = ‘\/E;Ynzn(z‘fz) +P03Cx, Yo, +2(243)

By = \/‘72';124-1(2‘]'2) +p03Cp,1,42(292)

Tog = ~VK,,, 11(205) + W K, 12(245)

Tys = a2J,, (205) +72*8:Cr, oz, 13(208) ~ (y + D0, .2 (2653)]

Tgs = agYnz (293) +7*p*6:Cr, p Yy, 13(292) — (ny + 2)Q2Yn2+2(24'2)]

Ty = a22|n2 qy)+ 7’2P253CT3 [‘ PN, 13(265) = (my + 2)Qiln, +2(293)

Tys = 2K, (205 +7°P65Cr, oK ., 5(245) — (m, + 20K, .2(245)]

(2-4b)

and g5 = qz\/z . Again, the last two rows of (2-3a) and (2-3b) represent the boundary

conditions at end (3) and their elements are denoted by 7); since part (2) of the beam

is Tapered. The intermediate four rows (the third to the sixth rows) represent the

boundary and continuity conditions at the intermediate end (2). The elements of the

first four columns of these rows are denoted by U; and/or u,; whereas the elements of

the last four columns are denoted by T}, and/or £, (since the part to the left of this end

is Uniform and the part to the right is Tapered). Special cases for this case study are

illustrated in Fig.3 .

(1) ) ) 40 ) 3
h | Part(1) |Part(2) | h | Part(1) |Part(2) |h
(@ (b)
AL (1-pL AL (1-BL
L - L
) 2 Q -
J
Fartdl) h| Part@ |h
L
? (© (d)
e—L—-—b

Fig.3 : Special cases of Case Study (2)

3
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Figures (3a,3b) represent the special case in which 8, =J, =1 and y =1.InFig.3a
[4] end (2)is free (Cg, > and Cr, - ). InFig.3b [ 5] end (3) is free (Cp, >
and Cp, > ). Also, the cases of simple uniform beam (Fig.3¢) and simple tapered

beam (Fig.3d) can be deduced from the characteristic Egs. (2-3), respectively, as :

Up U, U; Uy Iss Isg Is7 Isg
Uy Uy, U,y U tes e ler t
21 Y Uy Uy =0(c) and | % 66 o1 les =0(d) (2-5)
Usy U, Usy Usy s Ts Iy T
U Usy Us Ug g = Tgs Tge Tgs Tas A=
= 21993~

It is clear that (2-5¢) is the same as (1-6c¢).

Case Study (3) :
Referring to Fig.1 and Egs. (3-2), the boundary conditions at end (1) (7 =1) imply

that :

M _ a2
R dx - dxz

3
b yy(1) = -D {d;“) ( )(1 20, y‘“)}

The boundary and continuity conditions at the intermediate end (2) (7 =, 7, =1)

imply that :
a dvs (1
n@)=n»nl %: y;f)
ke, dy‘ﬂf“”:p,[ d’ n@) 5,d2y22(1)}
X dx dx
a> a2
{ le(al) ( jé‘ (n, +2)Q, Z;(z%)}
szyl(al):
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The boundary conditions at end (3) (7, = a, ) imply that :

or equivalently;

where :

kg

3

dyy (@) -
dx

-63Dy

d*y,(ay)
dx?

3
kr,y2(y) = 53D1\:d }Zx(az) ( )(n +2)0, d Y2(a2)}

These boundary and continuity conditions lead to :

0
0

T,
Iy

Iy

0
0

Tis
Ty
Ty
T43
T. 53
T

T4

Iy = _Jn|+l (qu)_pCRlJ"l+2(2q1)

Ti3 :In,+l(2QI)_pCR,In1+2(2q1)
Ty =y 20~ DCr [P 3 240~ +20203,12 1)
Ty =Y, 21)- P*Cry [PY 015281~ (1 +2)0, Y1220
Ty =1y, 241)~ Doy |- Playes 21~ + 201 2201)]
Tt =K, (20)~ P2Cr [PK 13 201~ (1 + 20K .12 201)]

0
0
Bs
Iys
Tss
Tgs
Ty

s

s

0
0
T3
Tis
Tss
Ty
T

Ty ==Y
T14 =—K"l+1(2(]1)—PCRIK,,l,,z(qu)

0
0
Ty
Tys
Ty
Ts

0
0

(3-32)

(3-3b)

m+1 (2ql)— pCRl Yn1+2 (ZQ])

(3-4a)
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-m /2 i -n '
Ty, =™, (24}) y T =@, Qe
) ! -m 12 '
T35 =« “ In] (249y) » Ty =« ' Knl (291)
Ty = _a]—(n,u)/szH (291) ) Ty = _a]—(n1+1)/2yn‘+l(2q{)
—(m+1)/2 ' -(n '
Ty =a e ey > Toy = —al( lH)/ZKan 2q1)

Ty =a; D2 fard, 1 (24)+ P5>Ciay 2 (241)]

Ty = a7 ™2 [ Y, 1 Qa1+ p8;Ch, Yo 2 2a))]

Ty = D2 ol Qa1+ p8;Cx, o 241)]

oy :al—(n,+2)/2[_\/&TK'HIH(zq;)Jrp52CR2Kn1+2(2q{)]

T = al_("'+4)/2[a,2J,,] (2q{)+p252CT2 {P\/ZJn,+3(2q{)_(n1 +2)01d,,42 (241 )}]
Te =061—("’)'4)/2[affY,,l (2q;)+pz52CT2 {p\ﬁ;Yn]+3 (291)-(ny +2)Q1Yn,+z(2‘h')}]
Ty =a; 202, (24})+ p25,Cr, £ pal,, 3241~ (m + 20,12 24 )]
Iy = e 2002K | (2g0)+ p26,Cy, (pdarK o 524D - (n + DK, 224
(o =Ty ~Tor = D2 [1= oty N, 11 @)+ PECry 2 (28]

tsy =Ts5; =Ty = al-(n‘+2)/2 [(l_\/&T)Yn,+l (2g1)+ p6,Cp, Yn1+2 (24, )]
ts3=Ts3—Ty3 = al-(n1+2)/2[_ (1—\/a—1)n1+1 (2g1)+ pS,Cp N2 (24 )]

tyy = Tyg ~Tos = a7 "2 [1 Jr, K1 1)+ p52Cr K2 Q)

teg =Ty =Ty = 061—(",4,4)/2[pzé~2C*T2 {‘D\/L—ZI_J,,IJ,} (291)-(my +2)Q1Jn[+2(2q;)}]

tor = T2 ~Typ = a2 [p76,C1, (o Y 5 201~ +2)2, Yoy 2 201
gy =Ty~ Ty = a2 [p26,C, L pifarl a2~ (m + D01 2 2]

1oy = Tyy ~ T = aC 2 [p25,Cy, (oK 2 (2= + 20K 2241

(3-4b)

with g; = ql\/c_x—, . The remaining elements denoted by 7; and ¢; are given by (2-4a,b).
Special cases for this case study are illustrated in Fig.4. Fig.4b illustrates studied by
Craver [3] (Cg =0,Cr, =0 , Cp —>®,Cp, >®, Cg, >0, Cpy = 8,0, /kL). 1

end (2) is free (Fig.dc: Cp, >, Cr, — ), or B =1 (Fig.4d), or g =1 (Fig.de), it
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can be shown, from Egs. (3-3), that the characteristic equation reduces to that of a

simple tapered beam (2-5d).

Fig. 4 : Special cases of Case Study (3)

4. CONCLUSION

The characteristic equation for the transverse vibrations of a stepped beam of two
parts is given. The solution of this characteristic equation gives the nondimensionless
frequencies {p,}of the beam and allows for the study of several parameters on these

frequencies (length ratio A, width ratio y and tapered ratios ; and a, ). The present

work allows to study the effect of the constraints at the three ends of the beam on the
natural frequencies. The nondimensional frequencies of the beam are given in terms of
the cross-sectional area and the flexural rigidity at the first end of the beam. The
problem of a simple uniform beam and simple tapered beam with/without an
intermediate translational/rotational spring can be deduced from the present work. For
tapered part, the breadth of beam may be constant or varying linearly with the length of

the beam.
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