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Abstract

Dynamic investigations of string-like and beam-like models of axially moving web are
carried out in this paper. The string model material as the Burgers element, and the beam
model material as the Kelvin - Voigt element are considered. The results of numerical
investigations show the solutions of the linearized and non-linear problems. Numerical results
show axially traveling speed and internal damping effects on dynamic stability of axially
moving web model.

1. Introduction

Axially moving continua in the form of thin, flat rectangular shape materials with small
flexural stiffness, called a web, one can find in industry as band saws blades, power
transmnission belts, magnetic tapes and paper webs. Excessive vibrations of moving webs
increase defects and can lead to failure of the web. The analysis of vibration and dynamic
stability of such systems is very important for design of manufacturing devices.

A lot of the earlier works in this field focused on dynamic investigations of string-like
and beam-like axially moving isotropic systems (e.g. [3], [4]). In all these works, the web
material was taken to be linearly elastic. However, paper webs, new plastics and composite
materials webs, which are used in industry need more realistic rheologic models. Many
investigators studied linear viscoelastic models. Kovalenko [1] considered the problem of a
column of constant stiffness with internal damping linearly proportional to the strain rate.
Stevens [2] considered the stability of an initially straight, simply supported column subjected
to axial load under the assumption that simple spring-dashpot models might adequately
represent column material. Fung et al. [5] studied the transverse vibrations of an axially
moving string subjected to initial stress. The string material was considered as the Kelvin -
Voigt element in series with a spring.

In this paper the transverse vibrations and dynamic stability of an axially moving
viscoelastic string model and beam model of the web are studied. The string model material as
the Biirgers element (four-parameter model), and the beam model material as the Kelvin -
Voigt element (two-parameter model) are considered. Galerkin's method is used to
approximate the mathematical model in the form of nonlinear partial differential equations.
Numerical results show axially traveling speed and material parameters effects on dynamic
stability of the axially moving web model.
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2. Equation of motion

An viscoelastic moving web of the length [ is considered. The web moves at axial
velocity c. The co-ordinates system and geometry are shown in Fig. 1.
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Fig. 1. Axially moving web

The problem of transverse vibrations of the axially moving continua in a state of
uniform initial stress was investigated [6]. In the case of thin web, the results of earlier
investigations show that the string and beam models can approximate the dynamic behaviour
of the web. The equation of the beam model motion in the z direction is
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where: A - the cross section area of the beam,
M - bending moment.
o - perturbated axial stress,
p - mass density of the beam,

The equation of the string model motion in the z direction is
P
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The uniform initial tension force P provides the required initial stress for the models
materials. The nonlinear strain component in x direction is related to the displacement w by

e(x,1) =—;—w§(x,t) (3)

3. Differential constitutive equation

The one-dimensional constitutive equation of a differential type material obeys the relation

Toc=E¢ 4)
where: I"and = are differential operators defined as
R d’ » d’
F’'=a—; E=)b— (5)
;n fdr’ /Zo "dr’

In the case of the beam the two-parameter viscoelastic model of material (Kelvin - Voigt
element) was taken into account (Fig.2a). The differential constitutive equation of the beam
model material can be written as

o,=FE& +yé (6)
Bending moment M is given M = —-EJw, -Jyw, (6a)

1
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Fig.2a. Kelvin - Voigt element Fig.2b. Birgers element

In the case of the string the four-parameter viscoelastic model of material (Burgers
element) was taken into account (Fig.2b). The differential constitutive equation of the string
model material can be written as

a,6,+ac, ta,= b, +bé, @)
where:
a,=7.7,; a=(E,+E)y,+Ey,; a,=E E,;
b,=Eyv,; b=EEy,

(8)

4. Mathematical models of the systems

To obtain mathematical description of the viscoelastic beam model one should multiply
Eq (1) with operator Iand using Eq (3) and (4) receives

) EJ. Jy P,
w,+2cw, +tCw F——W T+ w - o
PA, PA, PA, ©
—E—E—wiw_u —ZL(W‘, w, oW, ++cw, wfu)—-L(wiw_w +cw'w )=0
2p p P
The boundary conditions:
w(0,1) =w(l,1)=0; w, O,n=w_(nN=0 (10)
Let the dimensionless parameters be
el pe® pe i eafog BB peif o8 | Es (1
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Substitution of Eq (11) into Eq (9) gives the dimensionless nonlinear equation of the
viscoelastic beam model motion
2.k 2ag, PiSF-De ez 482, +b.z

i w s

3 (12)
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where: = J.r ; _E']x _EhzzAz : 7hz2A: (13)
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To obtain mathematical description of the viscoelastic string model one should multiply
Eq (2) with operator and using Eq (3) and (4) receives
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Substitution of Eq (11) into Eq (14) gives the dimensionless nonlinear equation of the
viscoelastic string model motion
Zowe +352,,, +B5 =Dz, +s(s -z, + 8.2..13852,, +

syt
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The problems represented by Eq (12) and Eq (14) together with boundary conditions
(10) have been solve using the Galerkin method. The following finite series representation of
the dimensionless transverse displacement has been assumed

z(u, r)=isin(i7r,u)qi(r) a7n

where gi(7) is generalized displacement.

Substituting Eq (17) into Eq (12) or Eq (14) and using orthogonality condition one
determines the set of ordinary differential equations. The Runge - Kutta method was used to
integrate these equations and analyse the dynamic behaviour of the system.

5. Numerical results

Numerical investigations have been carried out for the beam model of the steal web.
Parameters data: length [ = Im, width b = 0.2 m, thickness h = 0.0015 m, mass density p
=7800 kg/m’, Young's modulus along x: E, = 0.2 102 N/m?, initial stress, No= 2500 N/m.

At first the linearized damped system was investigated. To show dynamic behaviour of
the web natural damped vibrations of the first generalized coordinate and phase plots for
different values of axial speed of the beam model are shown in Figures 3 = 6. In undercritical
region of transport speeds (¢ < c¢) one can observe free flexural damped vibrations around
trivial equilibrium position (Fig.3). The critical axial speed value decreases when the internal
damping increases. In supercritical transport speeds (¢ > c) for small internal damping the
web experiences divergent instability (Fig.4) and next flutter instability (Fig.6). Between these
two instability regions there is a second stability area. The width of the second stable region is
dependent on the internal damping of the web material. When the internal damping increases
the width of the second stable region decreases. The time dependence of the first generalized
coordinate value at the boundary of the second stable region is shown in Fig.5.

Next the non-linear damped model of the steel web was investigated. Numerical results
in the form of the phase and transverse vibrations diagrams in various supercritical transport
speed of the web are shown in Fig.7 and Fig.8. Though the analysis of the linearized system
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predicts exponentially growing oscillations in divergence instability region of transport
speeds, non-linear damped vibrations which tend to new equilibrium position occur (Fig.7).
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Fig.3. "f"he phase and vibrations plots“(ls“: 0, bw="1A(-).4).
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5. The phase and vibr. plots (s = 1.406, b,=10°
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Fig.4. The phase and vibrations plots (s = 1.4, b,=10"")
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Fig.g. The phasé' and vil;:-plots (3‘2‘1,449, b:; f()”‘)
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Above the second critical speed of the linearized system the non-linear system
experiences global motion between new equilibrium positions (Fig.8). At the same transport
speed for different values of internal damping the system may reach various equilibrium

positions.
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Fig.7. The phase and vibrations plots (s = 1.3, bu=10")

6. Conclusions
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Fig.8. The phase and vibr. plots (s = 1.54, bhy=10")

Dynamic investigations of string-like and beam-like models of axially moving web are
carried out in this paper. The string model material as the Birgers element (four-parameter
model), and the beam model material as the Kelvin - Voigt element (two-parameter model) are
considered. The general forms of differential equations of transverse vibrations of the systems
are derived with the differential constitutive law for their rheologic models.
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Numerical investigations have been carried out for the beam model of the steal web. At
first the linearized damped model was investigated. Investigations results show that the critical
axial speed value decreases when the internal damping increases. In supercritical transport
speeds for small internal damping the web experiences divergent instability and flutter
instability. Between these two instability regions there is a second stability area. The width of
the second stable region is dependent on the internal damping of the web material. When the
internal damping increases the width of the second stable region more and more decreases and
disappears.

Dynamic analysis of the non-linear damped system with constant axial stress shows in
supercritical transport speed region non-trivial equilibrium positions bifurcate from the
straight configuration of the web and global motion between coexisting equilibrium positions
occurs. At the same transport speed for different values of internal damping the system may
reach various equilibrium positions.
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