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ABSTRACT

Effects of thermal-diffusion on the rotating hydromagnetic two dimensional
flow of an electrically conducting incompressible viscous fluid through porous
medium are analyzed. The flow considered is past an infinite non-conducting moving
plate. A complete analytical solution is obtained for the temperature, the
concentration and the velocity field using Laplace transformation and the method of
direct integration by means of the matrix exponential (state space approach) in the case
when the plate oscillates in its plane. The influence of various parameters involved is
discussed with the help of illustrative graphs.
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INTRODUCTION

Thermal convection in rotating systems exhibits a rich variety of phenomena not
only because of the interaction of rotation and convection, but also due to the
interesting results which could be achieved. Study of the effects of rotation of an
electrically conducting fluid in porous media with heat and mass transfer has received
considerable attention due to its numerous application in geophysics and energy
related engineering problems.  Such type of applications include natural circulation
in isothermal reservoirs, aquifers, porous insulation, heat storage bed, grain storage,
extraction of geothermal energy and thermal insulation design. Newal et al [1]
investigated the problem of the rotation of an incompressible, homogeneous , viscous
fluid over a porous plate. Both the plate and the fluid were in a state of solid body

rotation with a constant angular velocity about z-axis normal to the plate.
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Laplace transform method was applied to obtain the complex velocity. Busse
{2] studied the problem of of thermal convection in rotating system. He assumed the
existence of a static state of heat conduction in a homogeneous fluid to prove that the
basic state became unstable when the temperature exceeded a critical value. Several
buoyancy driven boundary layer flows have been studied by Raptis et al. [3,4].
Oscillatory flow through porous medium has been analyzed by Raptis et al [5] , for
small amplitude of oscillation only. To overcome this restriction, Singh et al [6]
studied oscillatory flow in porous medium by employing two asymptotic expansions in
powers of the frequency parameter. Hamid etal [7] studied the unsteady free
convection flow due to heat and mass transfer through a porous medium bounded by
an infinite vertical porous plate when the temperature and concentration at the plate is
oscillatory with time about a constant non-zero mean and the problem is solved by
using a regular expansion method for small value of frequency parameter.

The MHD convective flow in a rotating fluid has been investigated by many
researchers, Ram et al. [8], studied the MHD free convection fluid flow past an
impulsivly started vertical infinite plate in the presence of a uniform transverse
magnetic field when the fluid and the plate are in a state of rigid rotation with a
uniform angular velocity about an axis normal to the plate using an explicit finite
difference method. Ezzat [9] and Ezzatetal. [10-11] applied the state space
approach technique to solve a heated vertical plate problem and carried out the inverse
Laplace numerically also formulated the state space approach for one dimensional
viscoelastic magnetohydrodynamic unsteady free convection flow with the effects of a
viscoelastic boundary layer flow with one relaxation time.

In most of the above applications, the method of solution was either numerical
in time domain or in s domain.  Helal [12], has solved the unsteady free convection
flow due to heat and mass transfer through a porous medium bounded by an infinite
vertical porous plate under the action of an external transverse magnetic field of
uniform strength B, An analytical solution is obtained for the temperature ,
concentration and velocity fields as functions of time and space using the state space

method and Laplace transform techniques.
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The motivation of the present study is to solve the MHD fluid flow past a
nonconductive moving horizontal impulsive started infinite plate in the presence of a
uniform transverse magnetic field when the fluid and the plate are in a state of rigid
rotation with a uniform angular velocity about an axis normal to the plate. A complete
analytical solution is introduced for the temperature , concentration and velocity as
functions of time and height using Laplace transformation and the method of direct
integration by means of the matrix exponential (state space approach) which is

applicable to a wide range of problems in the field of magneto-hydrodynamics.

MATHEMATICAL ANALYSIS

Consider the unsteady flow of an incompressible viscous fluid through a porous
medium bounded by an infinite moving horizontal plate under the action of a
ransverse magnetic field.  Both the fluid and the plate are in a state of rigid rotation

with uniform angular velocity Q' about the z’- axis. A uniform magnetic field B
s acting along the z'- axis. Initially (t’ < O), the plate and the fluid are at rest and
have the same temperature T., and the same concentration C., every where. At time
t"> 0, the plate starts to move on its own plane with a velocity U f(t') along the x'-

axis.

U f(t')

Figure 1: Definition Sketch

The governing equations for such a case are
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Where u' and v’ are the components of the velocity in x'andy’ directions
respectively, , the pressure gradient is neglected here with respect to the other forces
and this is a reasonable assumption in rotating systems, g is the acceleration due to
gravity , B and B° are the coefficients of volume expansion and the coefficient of
expansion with concentration respectively, vis the kinematic viscosity of the fluid, D
is the molecular diffusivity, D; is the modified molecular, diffusivity a is the thermal
diffusivity , k is the thermal conductivity, ¢, is the specific heat at constant pressure, o
is the electrical conductivity of the fluid, p is the density of the fluid, K is the
permeability of the porous medium , T'and T/, are the temperatures of the fluid in the
plate boundary layer and away from the plate respectively , C'and C;, are the
concentration in the boundary layer and away from the plate respectively , and t’ is
the time.

The initial conditions are

Vi(z,t)=0, T(z,t)=Ty, C(Z,t)=Cq  for t'<0 (5)

where V'= (u’, v',O) is the velocity vector

The boundary conditions are
V'(0,t") = (U, f(t), 0,0), T'(0,t')=Ty, , C'(0,t)=Cj,

6
Voo, ') = (0,0,0) T(ot)=Th, Clot)=Cl ©
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where T, andC|, are the mean temperature of the plate and the species
concentration near the plate respectively and f(t') is an arbitrary function .

Introducing the following non-dimensional parameters
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Where G, and G, are the Grashof number and the modified Grashof number
respectively, p is the Prandtl number, Sc is the Schmidt number K is the permeability

parameter , 1/N is the dimensionless permeability, M is the magnetic number and E is

Ekman number. Equations (1)-(4) are converted to
2
A, 2i5q=2"94G.0+G,C-(M+N) 7
ot 022
®_12% @®
ot poz?
«€_129¢C ’c Q_zﬁ 9)
& Sc oz? ° oz?
with the following initial conditions
q(zt)=0, 6(zt)=0, C(z,t)=0 for t<0 (10)

where q=u+iv and i=+-1

and the boundary conditions are

q(0,t)= (f(1),0), 6(0,t)=1, C(0,t)=1 an
q(e0,t)=0, 8(c0,t)=0, C(oo,t)=0
TEMPERATURE SOLUTION

Taking the Laplace transform for Eq. (8) with the initial conditions (10) we get
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a6 =
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where 0= J'e_StG(z, t)dt
0
Using the boundary conditions (11), Eq. (12) has the solution

Blzs)=Le 2 (13)

S

Equation (13) has the inverse Laplace transform

0(z t)= erft{% \/%} (14)

where erfc is the complementary error function.
CONCENTRATION SOLUTION

Taking the Laplace transform for Eq. (9) with the initial conditions (10) we get,

2= 2% ]
sC= _l_(_i_% +S d—z— (15)
Sc dz dz
- o0
where C= [e™Clz t)it
0
d?e
and —, can be deduced from Eq. (13).
dz

Using the boundary conditions (11), and following the same steps, the solution
of Eq.(15)is given by
~ S - -
c(z,s)=l 1-SoSeP | -zyss. 1 SoScP | -z/sp (16)
s Sc-p s\S¢-p

Equation (16) has the inverse Laplace transform

(LR
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: §

THE FLUID VELOCITY SOLUTION

Taking the Laplace transform for Eq.(7) and using the initial conditions (10)
for the complex velocity q we get

g .
E:Lq+R(z,s) (18)
where Land R(z,s) are L=s+M+N+i2E and R(zs)=-G,8(z5)-G,C(zs).

8(zs) and E(z, s) are given in equations (13) and (16) respectively.

R(z,s)=_G,le—zﬁ-gmz[l_m}-z s, +1(soscp]e-z¢;; |
S

8 S¢-p S\ Sc-p

Substituting

dq .

=l 19

ok (19)
Eq. (18) takes the form

&

Sl _L§+R(zs) 20)

dz

The above equations, (19) and (20) can be written in matrix form as

wlal s olla]zan) e
dz{q,| |L 0j|q;] [R(z59)

The formal solution of Eq. (21) can be expressed as

[E ] = A2 {E(S,O) :i +eA®)2 j‘e—A(S)t[ 0 :‘d‘c (22)
o 4, (5,0) 0 R(1,s)

4

0 1
where A(s)=
L O
Determining the matrix exponential, using the Cayley-Hamilton theorem we get
eAl? —a T+a,A(s)
where [ is the unit matrix, a, and a; are given by

o= Ao e?»,z_ A elzz and a; = =1 ex,z+ 1 Az
Ay —MN Ay =2 Ay =2y

a
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where A, and A, are the roots of the characteristic equation given by

Ay =—vL and A, =+L, the matrix will be

1
coshzL  —=sinhzVL
eA(s)z _ r-L
JLsinhzWL  coshzVL

Substituting into Eq. (22), the solution takes the form,

4(es)=¢ [q(o g 2sf@9 X )]
zr[

Y
2s«/f J—+ ZSJE(*/E—\[})_S_)]

Gho
n 23
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SoScp =i = S Scp asidl

where y=G,; +Gp
Sc p SC_P

§(0,s)= ?e‘s‘ £(t)dt

Consider the case when the plate oscillates with the frequency

o,ie(ft)= A ), where A and ® are constants.

The inverse Laplace Transform of Eq. (23) is given by:

t —-at

. Y 1 e
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I-py  (2Vt-1 Seg (2t-t
where a=M+N+i(2E), b=1fp, °=1-asc’
zFF(;ZZ?)} Lz 04E 02 0)
and Fy (2,2, t) = erfk ;Tiﬁ]eiz‘ﬁ

Equation (24) represents the exact solution of the complex velocity field.

6. RESULTS AND CONCLUSIONS

Equations (14), (17) and (24) represent the complete solution of the presented
problem. To examine the effect of the various parameters on the temperature
distribution, from Eq. (14), the variation of temperature with the vertical distance z is
calculated at different values of the the Prandtle number p is shown in Fig. 2.

The temperature is calculated at time level 0.2, it is clear that the increase of
the Prandtle number p makes the temperature distribution concentrates near the
boundary layer. Figure 3 represents the transient behavior of the temperature at

7=0.5. It shows that the steady state distribution comes at t=3.0 .
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Fig. 3. Variation of Temperature with time at z=0.5.

To examine the effect of the various parameters on the concentration distribution, from .
Eq. (17), the variation of concentration with the vertical distance z is calculated at

different values of the Schmidt number S, is shown in Fig. 4.
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Fig. 4. Variation of Concentration with z at time=0.2.

The concentration is calculated attime level 0.2 and p=5.0, it is clear that the
werease of the Schmidt number S, makes the temperature distribution concentrates
mear  the boundary layer and the concentration is approximately the same at z=0.4 for

#ll values of S, .
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Fig. 5. Variation of Concentration with time at z=0.5.
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Figure 5 represents the transient behavior of the concentration atz=0.5.It
shows that the steady state distribution comes at t=3.0 .
The behavior of the velocity components u and v with different parameters
is examined from Eq. (24) with G, and G, =2.0 ,as follows:
Figure 6 shows the change of u and v with z for different values of the rotating

parameter E at t=0.1. Itis clear from the figure that the flow field is greatly affected

by the variation of E near the plate (small values of z).
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Fig. 6. Variation of Velocity Components u and v with z at different values of the
rotating parameters E at t=0.1
Figure 7 shows the change of the velocity component u with z for different

values of the the magnetic number M and the porosity N which representing a
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sesistance to the flow field at t=0.1,E=1.0, p=5.0 and Sc=0.5. It is clear from the figure
St the increase of M+N decreases the flow field.
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Fig. 7. Variation of The Velocity Component u with z at different values of the the
magnetic number M and the porosity N at t=0.1.

" Figure 8 shows the change of the velocity component v with z for different
values of the modified Grashof number at t=0.1, p=5.0 and Sc=0.5, E=1.0. Itis clear
from the figure that the flow field is greatly affected by the variation of E near the plate (small

values of z).

The Velocity
component v

Fig. 8. Variation of The Velocity Component v with z at different values of the
modified Grashof number at t=0.1
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The temporal variation of the velocity components is shown in Fig. 9 at
2=0.5,p=5.0, §;=0.5 , A=G,=G,=1.0 and M+N=2.0.
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Fig. 9. Variation of Velocity Components u and v with time at different values of E

and o .
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The effect of the different parameters on the flow velocity hodograph.
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Fig. 10 Effect of A on the flow velocity hodograph. (G,=2., E=1., M+N=2., ® =10.)

- _
o2 ¥ _z0Q o \ ool =00, N
02 0.3
253 o
0.1 o
Gy =2.0 0.24 G,=1.0
0.1 15 o
O
0.14 o
pe o , .05 . B <
O ’n I'm o
0B35 90.19 0196 0.2 025 00.05 0.1 0.15 0.2 0.25

Fig. 11 Effect of G, on the flow velocity hodograph. (A=.5., E=1.,, M+*N=2., @ .)
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Fig. 12 Effect of M+N on the flow velocity hodograph. (A=.5., E=1., G, =2., © =10.)
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