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Abstract:

In a previous paper [1], a simplified formulation was presented to deal with the
interfacial lincar stability problem with iass and heat transfer , considering the presence
of a periodic electric field . The present paper treats the same problem with a nonlinear
approach. This approach is achieved by considering the multiple time scale method .
The analysis reveals the existence of both resonant and non - resonant cases. Three
types of nonlinear Schédinger equations are derived . The necessary and sufficient
stability of conditions is obtained and the results arc confirmed numerically . Graphs are
drawn to illustrate the stability regions.



226 Y. D. Mahmoud, G.M. Moatimid, Y.O. El-Dib

1.Introduction:

The instability of the plane interface between two superposed fluids of different
densities is called the Rayleigh - Taylor (R - T) instability . The R- T instability was first
investigated by Rayleigh [2] and then by Taylor [3] . The Kelvin - Helmholtz (K - H)
instability arises when adjacent layers of fluids are in a relative motion. Chandrasekhar
[4] gave an introduction to the classical K-H instability. He discussed the cffects of
surface tension, variable density, strcaming velocity, rotation and application of
magnetic field on the stability behaviour . The study of electrodydrodynamic (EHD) K-
H instability of free surface charges, separating two semi - infinite dielectric streaming
fluids and influenced by an electric field , has been discussed by Melcher [5] . The
main difference between R - T and K - H is the inclusion of (V.V)V whichisa
nonlinear tem, in the perturbation equations.

The ﬁonﬁnear perturbation of stability analysis of the above modcls was
investigated by many authors . Drazin [6] has been investigated the nonlincar
developments of K - H instability in electrically nonconducting incompressible fluids.
The method of multiple time scales introduced by Nayfeh [7] has the advantage that it
leads to two nonlincar Schr8dinger equations , describing the finite amplitude wave
propagation through the surface, one is valid near the cutoff wave number , while the
other can be used to study the stability of the system. Oron and Rosenau [8] studied the
nonlinear evolution of a perturbed interface that separates two liquids of different
viscosity. They showed that the  interface is governed by the negularized Kuramoto -
Sivashinshy cquation with the use of a new approach with accounts for large gradients.
El - Dib [9] studied the parametric nonlincar Schradinger equation and its stability
criterion. He gives a useful analysis of the dispersive perturbations for a periodic
temporal sohnio_n.

All the pervious studies of interfacial instabilitics have been based on the
assumption that the fluids are immiscible , therefore , there in no mass transfer across
the interface . The immiscibility condition concerns the limit case of infinite latent
heat.Ordinarily , since the latent heat is very large , it is a very good approximation to
treat the fluids as immiscible when the thermal effects are very small . However, when
there is a strong temperature gradient in the fluid, thermal effects on the interfacial
waves can be appreciable. Therefore, there is significant mass transfer across the
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interface and in turn transfer of heat in the fluid has been taken into consideration .
Hsich [10] has given a general formulation of the interfacial flow problem with mass
and heat transfer and applied it to both R - T and K - H instabilities . The lincar study
of these problems, in the presence of a periodic electric field, has been studicd by
Moatimid [1,11]. Mohamed et al. [12,13] studied the nonlincar (EHD) R - T
instabilities with mass and heat transfer.

To the best of our knowledge , no attempt has been made to examine the effect of
a tangential periodic electric ficld to a horizontal interface admitting mass and heat
transfer.We have , therefore , extended the pervious work [1] through a nonlinear
perturbation analysis . The derivation of the parametric nonlincar Schrédinger equation
is based on the method of multiple scales . Both of the steepness ratio of the perturbed
wave and the amplitude of the periodic electric field arc taken as a small parameter. The
method used carricd out the nccessaxj' and sufficient conditions of the stability. The
results are confirmed numerically.

2.Formulation of the problem :

Two fluid layers confined between two horizontal rigid parallel plates that are
infinitely long are considered. Cartisian coordinates (x, y) are used and without any loss
of generality the z - axis is omitted. The y - axis being taken vertically. Itisgssumed, in
the equilibrium state , that a hypothetical interface at y = 0 separates the two fluid
regions. The fluids are incompressible, inviscid and homogencous. The fluid (1)
occupies the region —h, <y <Ohaving the density p® and the diclectric constant 0.
The fluid (2) occupies region 0 <y < h,, possessing density p® and dielectric constant
¥ The temperatures at y=h,,y=-hand y = 0 are T®, T"and T,
respectively .Acceleration duc to gravity (g) acts in the negative y direction. The
perturbed interface is given by

S(x,y,) =y -&(x,) =0,

1
where y = §(x, t)denotes the clevation of the surface at time t. The system is stressed
upon by a periodic tangential electric field in the x - direction , which has the following

form :
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E = (E, +eEcosw t)ey,

2
@, is the frequency of the field.

The flow is assumed to be irrotational , thus the basic equations governing the
perturbed velocity potential ¢ are
Vi® =0, _for —h, <y <{(x,t)
3
Vi@ =0, for (x,t) <y <h, ,
4
The perturbation produces an additional electric field, which can be derived from a
scalar potential y(x,y) such that

E = (B, +cEcosw, t)eg - Vy

3
It follows that [5]
Viy® =g, for —h, <y <{(x,1),
(6)
viy® =0, forg(x,t) <y <h, .
)

Here $and yare the velocity and clectrostatic potential of the perturbations . At
the two plates, these potentials satisfy the following boundary conditions:

%), ),
oy y—_——hl o y:h2 ’

®

52, o),
ax y::—hl ax y:h2

®
In addition, the interfacial boundary conditions between the two fluids are:
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2y &

ax]] ax[[ay]] 0, ay=¢
109
(B, + o coso [T} o2 - gf[[saxlmr""" aty=¢
(11)
where [[ ]] represents the jump across the interface .
The stress tensor may be expressed as [5] :
I, = -TI5; + SE.E, - (1/ 2)8E%8;;.
(12)

where I1=P—(1/2)8E} , with P is the hydrostatic pressure which can be obtained
from Bernoulli’s cquation and 8 is the delta Kronecher.

The interfacial conditions that express thé conservation of mass and momentum are
given by [10]

pm(g " v¢°>.vs) = pﬂ)(5;§+ v«p(”.vs) ay=¢,

(13)
and
a5 as
m| o ® — @ 2 ) @)
p (a +Vo .vs)(w .VS)=p (m + Vo .vs)(vq; VS
{ms’ IP)m; - n; 5(E+ R‘ )] 12, aty=g,
14

where n is the unit normal vector to the interface , o is the surface thsion coefficient ,
R,and R, are the two principal radii of curvature “of the mtcrfacc . The radius of
curvature is taken to be positive if the center of curvature lics on the side of the fluid (2)
, otherwise it is negative.
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Finally, the interfacial condition for energy transfer is given by
me(§+ V¢‘”.VS)=f(Q, aty=¢,

(15)

where L is the latent heat released when the fluid is transformed from phase (1) to
phase (2). The left - hand side of (15) represents the net heat flux from the interface
into thcﬂxﬂdtegimswhmamhaphmhmfmmaﬁm'uhkingphce.lﬁsqumﬁtyis
taken to beappm)dmntelyexpmnible_inmofﬂwbdmceofheatﬂuxesindwﬂxﬁd
rcgionsuifﬁ\clylwmisinmntmeoudyhdymnﬁcequiﬁbrhm

As in Ref. [14] , we denote

() = aG+2,8* + L),
(16)

v = h] + h]
* " hh(h, +h,)

and

K® (T(ﬂ) o T(l)) K® (T(l) - T("') )
G= =
h, h,

>

is the cquilibrium heat fhux Here K® and K® represents the lower and upper thermal
conductivity , respectively.

If fluid (1) is hotter than fluid (2) , then L is positive and G is positive since
TV > T 5 10, If fluid (2) is hotter than fiuid (1) , then L and G arc both negative .
Therefore, a is always positive.
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3. Method of Solution :

Now, we have a well-defined boundary vatue problem. To investigate the nonlincar
interaction of small but finite amplitude waves, let us apply the multiple scales method .
To that end, we cxpand the various variables in ascending powess in terms of a small
dimensionlcss parameter € characterizing the amplitude of the periodic force . The
independent variables x ,t are scaled in a like manner ,

X,=s% , T,=s% ,n=0,12
an
2,0 = _z’_;e'c.(xo,X.,x,:ro,T.,T,)+O(e‘),
as)
and the variables may expanded as
O = 20, (Ko X, Xo BT T+ 06,
a9)

where O stands for the physical quantities ¢ or .

Since the boundary conditions (10), (11), (13)<15) are prescribed at the interface
y = &(x,t), thercfore , we cxpress all the involved physical quantities in terms of
Maclaurin‘s series about y = 0. On using the above expansions (17) and (18) into the
set of equations (3) - (15) , and equating the coofficients of equal power in &, we

obtain the lincar as well as the successive higher - order equations. The hierarchy of the
cquations for cach order can be obtained with the knowledge of the previous orders.

4. The first order problem ;
The solutions of the first - order problem lead to the dispersion relation
F(0,k)=0

where

F(@,k) = (0 /kXp™ cothkh, + p® cothkh, ) + (i / k){cothkh, + cothkh, )
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~(Eg /8" (OIK(E® - §®)* sinhkh, sinhkh, - g(o® — p®)_ k%6,

(20)
where
s'(k) = % sinhkh, coshkh, + §® ginhkh, coshkh,
The dispersion relation (20) is reduced to
3,(i0)’ +a,(-iw) +a, = 0,
(21)

where

a, = p® cothkh, + p@ cothkh,,
a, = a(cothkh, +cothkh,)

( Ejk}(E® —g0y J K? O _ @
B0 = (Y cothkh, + @ cothkh tioo+ g™ -p%)

It is well known from the Routh - Hurwitz criterion [15], that necessary and
sufficient conditions for stability , for the quadratic equation (21), are

a,>0 and a;>0,
(22)
since a, is always positive.
The condition a, >0 is trivially satisfiéd since o > 0, whils the condition a, > 0
gives

[s“’ cothkh, +5® cothkh, J[g(p® - p®)-k%o]
k(s(l) ~(1))2 )

(23)

It is clear, from (23), that the tangential electric field has a stabilizing influence for
all values of E; > E?, where

E? = [E? cothkh, + §® cothkh g(p® - p®)y - k’c]
. k(s(z) e E(l))l

24
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Thus, the system is lincarly stable. On the other side, the periodic electric field has
no implication at this order.

(4) The second order problem :

The inclusion of the periodic electric ficld would yicld results radically different
from the classical case . In classical Rayleigh - Taylor problem , admiting mass and heat
tvansfer , the second - order surface deflection &, is modificd to be

€ =Gx +Cu>»
(25)
where ¢, represents the elevation in the absence of the periodic ficld as obtained by
Mohamed et al {12].

Ly = -20,AA+ QAY(X,, X, T, T)e 2050 0h) e,
(26)
the addition term §,, is due to periodic force which is given by
£, = 0,(X,. X, T, T K0T e,
27
while &, denotes the forcing duc to oscillation of gravity . It is found that Q, should
satisfy

0

[(p“’ cothkh, + p® cothkh,)ga;—z— +a.(cothkh, + cothkh, )5% +(p® cothkh, +

2k’E E

=0
Tl °

. &,
+p® cothkh, Xof ~ @) - 2a(cothkh, + cothkh, )(—2‘—)}0, = [”

0A
—+

—&9)sinhkh, sinhkh,A cos@, T, + 2io; (p® cothkh, +p@ cothkh,)(ar
. 1

+96—A)}i(“xo“”°)+c.c.,
dk X,

(28)
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Equation (28) contains terms which correspond to the factor exp(—-io,T,). The
elimination of these terms leads to secular terms that lead to the solvability conditions.
In onﬁtﬁngﬂwsctenm,weneedmcﬁsﬁngishbetwmtwocases;meﬁmasewhen
the external frequency woisawzyﬁqmﬁlcrealpanofﬂncwmﬁ'equcncyco(ﬂ:cnon
- resonant case ) , and the second one ariscs when the frequency o, approaches
20rand op(e =, +i(oi).'l'hus in the non - resonance case , the following
solvability condition is obtained :

O0A do 0A

oL, dkaX,
(29)
where %isgivminthcappendix.
With the solvability condition (29) , in the non - resonant case , the particular
solution of (28) is

: & ()0 ,L, (@] — 4o3)
+2ioy sinw,T, ]Ac_imn +CC

2 ~(2) _ ~@)\2 .
& =[21: Ef(z ) mnhkh,snhkh,}mnmmon

(30)
where
L, = p® cothkh, + p® cothkh,
(1
In the resonance case the frequency @,is assumed to approache 2w, by
introducing the detuning parameter o, as defined by

®, = 20 ¢ + 2€0,,
(32)

-i(@y - 0p)T, = —i(0y +260,)T,.
(33)

Thus the solvability condition, in this casc , yiclds
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9A  do 0A iych‘Zi"'T',
aT,  dk X,
(34)
where
_ | K’EE(E® - §®)sinhkh, sinhkh,
ig= 26" (k)o,L,
(3%

Equation (34) is the solvability condition in the resonant casc . Therefore the
particular solution of equation (28) is

+C.C

B o K’E EE® - €)sinhkh, sinhkh, | —i(® +0)T
t &' (K)o, L, (0, +20y)

(36)
5 ird order
In this order of the investigation the surface deflection &, satisfics the following
equation

& 1L, 8 kE3(5® —5W)?
O _,@ & e W e 0 =
[(p a ”‘”k’m k aT, °F " &*(k)sinhkh, sishkh, |*

a
oT?ox,

_[kl_z[l‘l +k(p®h, coth? kh, + p®h, coth? kh,) ~k(p®h, + p®h,)]
G/ K*)L, + (e / k)(h, coth? kh, + h, coth? ki, ) + (2L, / k)~ it/ k)h, +h,)]

az
X
oL,0X,

o T
+(2L,/k)arnar +(L,/k)————+i{kE,,E/s *KIEP -5 cos0, T,

~2ko - {k(E® -§)* / ¢ (k)}E2{¢" (k)sinhkh, sinhkh, + (§®h, sinh® kh,

3 kE E

+¥®h, sinh? kh,)}]—z—}n,c‘kx" | cosw, T (E® ~ §V)} (', sinh? kb,
_ X, e'(k)
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+€®h, sinh® kh, )+ Iklikl;'co:;co T,(§® — €®)? sinhkh, sinhkh ]—
l

____}(*;3() (E? - §9)? cos” 0, T, sinhkh, sinhkh,]mi(“x"‘“ﬂo) = [— %(iL, +20L,)

x;;—A +i[(-iL,® /k*) - (@’L, / k*)~ 20k - {(kG® - 5©)* /s“(k)}E;{(EO’

xh, sinh? kh, + §®h, sinh® kh, ) - sinh kh, sinhkh, } - (h, / k sinh® kh, Xiow +
+0*p®)— (h, / ksinh® kh, Xiow + ® p(")] +(L /k) +[(1L 1k*)+

1

+(20L, / k*) + (h, / ksinh® kh, Xio. + 2mp“’)+(h2 / k sinh? kh, Xic. + 20p®)x

= +[(ioL, /k*)+ (@’L, / k*) - o+ {(h, / k? sinh® kh, ) + (h] coshkh, /
aX,0T,

k sinh® kh, }(iaw + ©*p®) + {(h, / k* sinh® kh, ) + (h} coshkh, / k sinh’ kh, )}x

(iaw + 0*p®) + {E§E® - ) /6 (k)}{-2kh;h,E@E? sinhkh, sinhkh,

—kh? sinh? kh, (8 ® sinhkh, sinhkh, + €® coshkh, coshkh, ) — kh; sinh® kh, x

(8™ coshkh, coshkh, + &® sinhkh, sinhkh, )+ &*(kXE®h, sinh’ kh

+EPh, sinh® kh )}@ Al X@}i(m""n) +C.C+NST,

@37

where

L, = cothkh, + cothkh,,

the term NST stands for terms that do not produce secular terms and @ is given in
[12]. To analyze the particular solution fo;‘ equation (37), we need to avoid the non -
uniformity of equation (37). Thus, we need that the secular terms to vanish . Three
possible cases that produce secular terms are found , where ®,is away from
o rand®, approaches 2@ and®, . The climination of the secular terms produces the
following solvability conditions in theso cases.

(5.1) In nion resonance case :
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In this case the frequency w,is considered away from the wave frequency @y .
Thus the solvability condition of the third order in the non resonance case is given by

igA_ idm A 1dma’A

o +MA A?A =
oL, ' aox, 24k oXF L 0=

(38)
where
M, = {-k/20,L}[{2k’E2E*(E® - §P)* sinh® kh, sinh® kh, / 6™ (k)L, (@}
—4w2)} + {(kE? /2" (K)}EP - V)’ sinhkh, sinhkh, ],

(39
Q, =-[k®; / 2(p® cothkh, +p® cothkh,)w,],
(40)
and
Q, = -[k®, / 2(p® cothkh, + p® cothkh,)w,].
(41)
By using the Gardner - Morikawa transformation, equation (38) becomes :
i%J« (P, + iPz)%+ M,A +(Q, +iQ;)AA =0,
42)
where
2
P, +iP;, = - :k’ .
(43)

Equation (42) is a nonlincar Schédinger equation with complex coefficients.The
stability condition for the nonlinear equation (42) is discussed in Elhcfnawy et al.[16].

(5.2) The resonance cases :

(5.2.1) The case of @ jnear 2wy :

Inspection of the right - hand side of equation (37) reveals that , in addition to
terms proportional to the factor exp(xi®T,), the secular terms are produced by the
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terms proportional to the factor exp[(ti(@, — ®¢)T,]. In this case, we express the
nearness of @, to 2w, by introducing a detuning parameter o, defined according to
equation (32). Therefore , exp[—i(w, — ® )T, ]1= exp[—i®y —ZiclT,]. The secular
terms arc climinated from cquation (37) by the help of cquation (34) . Thus the
solvability condition in this case is given by :

.0A . do 0A 1d'e &’A i dA
— il ——t - —=+ RA+(Q, +iQ,)A’A+[(S, +iS,) —+
'51", ldkaxz 24k ox2 ! (Q +1Qy) (5, +1 ’)ax,

+FAp 20T _

0,
49

where R,,S,,S,and F are given in the appendix.

By using the Gardner - Morikawa transformation, equation (44) becomes :

i%:—+ (P, + m,)%+ R,A+(Q, +iQ;)A* A +[(S, +iS,)?£—
+F, K}G-Zic,s"‘r =0,
435)
This equation is a parametric nonlinear Schrodinger equation with complex coefficients.
The stability criterion is obtained by El-Dib [17]. We follow the procedure adopted
there. Thus , we assume that equation (45) admits the following time - dependent
solution :

A = mexp[-i(o,6™ - R, -Qm*)}x

«“6)
Substituting from (4€) into (45) , we obtain
0,67 +iQ,m? + F, exp[-2i(R, + Q;m*)t] = 0
. “n
By scparating real and imaginary parts of equation (47) , we get
0,67 + Fcos2(R, +Qm*)t =0
(48)

Q,m* - F; sin2(R, +7Q,m’ )x=0
| “9)
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Squaring cquations (48) and (49) and adding , we obtain
m = [ - (o} /e"))/ Q}

(50)
m’ is real when
F? — (o} /&%) >0
' (51)
or
m? =[F} - @} /D) 1Q,
| (52)
The solution (46) must be bounded , this requircs that
QIF - (oi /&")}>0
(53)
To examine the stabilitycrimia,wcpcrtm'bﬁlc solution (46) according to
A = (m+a +iB)exp[-i(c,6* - R, ~Qm*)}¢
(54)

where aand Pare real . Substituting (54) into (45) and neglecting nonlincar terms in

aand B, we get

o o* - oo
—%P.&%—P,;ig»er.m’a-a/Fo[c,s 5+ {:%)—Q,m’(—zﬁﬁ

oo
—sl%s,—)ko

@
(59)
and
o O Pa ) o
—+P,EE-+P, 56‘jf—+2Q,m’m-(1/1§)[c,s 1(-2F, -8, %+ S, E)
+Qum* (8, % +5, %)1 -o.
(56)

Equations (55) and (56) arc lincar cquations , their solutions can be taken the form
(%, 7) = A expligt + Or]
57
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B(&, ) = Bexp[igg +(xr]

(58)
where q and Q are the wave number and frequency respectively.
Substituting (57) and (58) into (55) and (56) , we find that q and (Q satisfy the
following dispersion relation
Q*+C,Q+(C, +iC,y) =0,

(59
whereC,, C, and C, are given in the appendix .
The necessary and sufficient conditions for stability require that [15]
@yF - (61 /57) - q’P,)> 0

(60)
q®+b,g°+b,q* +b,g* +b,>0

(61)
The transition curves separating stable region from unstable corresponding to
q" = /P, B — (o1 /6,

(62)
q“ + blq” + bzq"tz + qu‘ + b4 =0

(63)

where q* = ¢

In what follows, we shall give numerical discussions for stability of the system
under consideration by drawing the transition curves. The transition curves are
represented by equations (62) and (63) in the q‘ - k plane . In the following figures, the
letter S denotes stable regions while the unstable ones are characterized by the symbols
Ul and U2.

The values of q' , a8 described by equations (62) and (63) , are the critical values

of the disturbance . These critical values, which are known as the transition curves 2
scparate the stable from the unstable regions.
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In figure (1) q* is plotted versus k for a system having the particulars p® = 0.978
g/em® |, p®=5542E-04 gm/cm’® , §®=61.03, §@=1.078, T = 58.8 dynes/cm , g
= 980 cm/sec’ , 0,= 309 HZ, E,= 4.0 dynes/esu, 8= 0.1 and £ = 129 dynes/esu.
The regions in the (q'- k) plane where every point in it satisfies the incqualitics (60)
and (61) are labeled by S. The unstable regions are indicated by the symbol U. In figure
(1) , ihe unstable regions are characterized by the symbols Ul and U2 and the stable
region is indicated by S.

. Figure (2) represents the same system in figure (1) , but the field frequency has the
value ®,=317 HZ. The comparison between figure (1) and (2) show that the increase
of the frequency o ,increases the unstable region Ul , while the unstable region U2 is
decreased .Thus , the field frequency®, plays a dual role in the stability analysis .El -
Dib [17] found that the ficld frequency has a destabilizing influence in the absence of

mass and heat transfer.

Figure (3) represents the same system in figure (1) , but E, = 4.3 dynes/esu. From
figures (1) and (3) , it is shown that the increase of the clectric ficld decreases the
unstable region Ul while the unstable but the region U2 is increasod . Therefore , One
can say that the eclectric ficld plays a dual rolc the stability . EI-Dib [17] show that the
electric field plays a stabilizing role in the absence of mass and heat transfer.

(5.2.2) The case of ® near wy:

We express the nearness of ®,to @, by introducing a detuning parameter o that
defined according to
W, =®p+6'0
(64)
Therefore , the solvability condition in this case is obtained as :

2

i—aaﬁt.+ (B + iP;)%,;ﬁ +MA +(Q, +iQ,)A’A +G, Ac 25T — ¢

(65)
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[0X:]

0.7

06 1

05

03 +

02+WU1

0.1

38 41 412 414 4.16 4.2 425 44 46 48 S 5.2

k
Figure(1) : Represents a system for p® = 0.977 gm/cm’, p® =5.542E-04 gm/cm’ ,
9= 61.03 , §®= 10078, w,= 309 HZ, T=58.8 dynes/cm g =
980cm/sec’, E,=4.0 dynes/esu, 6= 0.1 and E =129 dynes/esu.

08 %
07 +
06 t

05

03t

02+ .

o1+ W /’/2\
U

39 41 421 423 424 426 43 44 45 47 49 51 53

k
Figure(2) : Represents the same system considered in Figure (1), but o,=317 HZ.
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where G, is given in the appeadix.
Equation (65) is a parametric nonlincar Schrddinger cquation with complex

~ coefficients.
In the second resonance case of ®,approaches @, the stability conditions are
given by [16]
*
-q P, +2Q,m, >0
(66)
i *
q + qu + S‘ >0
(67

where

:nf = ‘/(G: -0)/Q,,
S, ={1/ P+ P})i(-2P,c - 2“‘:pr| = 4P2sz:) s
S, =[1/(P} + P} )(4m;Q,0 + 4Q;m}),

The transition curves scparating stable regions from unstable regions corresponding

to

q*=(2/ P,),/Gf -o?,

(68)
L3 L d
q + Ssq + S4 =0
(69)
Figure (4) represents a system for p®= 0.978 gm/em’, p@= 5.542E-04
gm/em®, §¥= 61.03, §@=1.078, T = 58.8 dynes/cm , g = 980 cm/sec’ , ©,=2312
HZ , E,= 100 dynes/esu and E = 80 dynes/csu . For curve (1), @,= 2312 HZ. The
region in the (q*- k) plane which every point in it satisfics the inequalities (66) and
(67) are indicated by symbol S. In figure (4) the stable region is characterized by the
symbol S1 and unstable region is indicated by U. In figure (4), curves (2) and (3)
represent the same system for curve (1) but for curve (2), @, = 2300 HZ and for curve
(3) , ®,= 2280 HZ . The comparison among the three curves, show that the stable
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U2

38

k

Figure(3) : Represents the same system considered in Figure (1), but E,= 4.3 dynes /

s,

4038 405 407 4.09 412 417 43 45 4.7 49 5 S8

346
352
358
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371
376
382
388

Figure(4) : Represents the same system considered in Figure (1), but E,= 100

dynes/csu and E = 80 dynes/esu., for curve (1), @,= 2312 HZ. For curves
(2) and (3), @,= 2300, 2280 HZ respectively .
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region S1 is increased as the field frequency ®,is decreased. Thus , the filed frequency
has a destabilizing effect .

Figure (5) consists of three curves, the first curve (1) is the same as curve (1) in
figure (4) . But for curve (2) , E,= 102 dynes/csu and curve (3), E,= 105 dynes/esu.

From figure (5) , it is shown that as clectric ficld increases the unstable region is
decreased.One can say that the electric ficld has a stabilizing influence.

6.Conclusions :

For our study of the nonlinear interfacial instability of two electrified miscible fluids
, we come to the following conclusions :

(1) The method of multiple scales is used to obtain two parametric nonlincar
Schrédinger equations in the resonance cases and a classical nonlinear Schrédinger

equation in the non - resonance.

(2) The stability criterion is affected by the amplitude m of the temporal solution (46)
which depends on the parameter of the parametric Schradinger equation.

(3) The necessary and sufficient conditions for stability are obtained.

(4) In the resonance case of ®,near 20, the field frequency and the clectric field
play a dual role in the stability analysis.

(5) In the second resonance case of @, near w., the field frequency has a destabilizing
effect but the electric field has a stabilizing influence.
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Figure (5) : Represents the same system consideved in Figure (4) for curve (1) E, =

100 dyncs /osu., but for curves (2) and (3) E, =102 and 105 dynew/esn.
respectively.
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Appendix
do (l)h p(l) Lx oh, ah,
I—(I/ZLQI)[(CO' ~ % )[smh’kh +unh’l;;h, FiE mi[smh’kh, sinh? kh
][ q(k)]k 2(FP - §W)? (h,&Y sinh® kh, + h,§® sinh® kh,)+ 2k’c +
@ _ =02 B} . b, ®
+k(8® - 8%)" sinhkh, sinhkh, }—"— () 11+i(d/2L, wnh? ki, (2o p™ +a)
h, ®
+ 20 + o
ﬂ-nhz kh: ( l'p )

a2 1 SED g0y 2 inh? :
8L,corm..<m..—4mr>s &)
“EAC(E® - §®)* sinhkh, 'inhkhz]

x(m:+4mm—[

4L,0,5"(k)
= -BEX*(@E® - §¥)*osinhkh, sinhkh,
1 2L, 0}’ (k)
~(2) ~(l) 0 (1 Cl)h

B =e EE k( ) Smhkhx‘“nhkhz [Zw’{ I‘z sl 11 }

4L 0t0,(0, - 20p)s"(k) ] ksinh®kh, ksinh® kh
o h h, :
R praadere ) LGl Z‘Dr)+f°3]]
- EE K*(E® - ~“)) sinhkh, sinhkh, | [L, p¥h, p®h, ]
2 420 06 (k) L &*  ksinh®kh, ksinh® kb,

(@} ~ 0} X0, +205)~ 20,0} - @@, + 2023 + ;J":E

+

— N+ (@0 + 200)(2Kk0 +{kE, /6% (K)}(h,&® sinh® kh, +h,§®
1

i EE k(D _g0y?

3 K
=) ginp2 TP ginh? i i =
[2 o )(h g® ginh® kh, + h,&"" sinh kh,)+§1nhkh,nnhkh,[2+wrqu

pOR, N
{ksmh’kh ¥ Ksinh® kh }]]
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' [—ﬁ’k’(ﬁ'm ~§®)? sinhkh, sinhkh,
r

C, = 4Q,m* - 2P,¢? ‘

C, =q¢*(P} + P})+ ¢*[-2Q,m’P, + (1 /F?XS,0,8 " -8,Q,m*)* + (1/ F)x
x(5,0,67 +Q,m’S,)* - 2P,o,s”* - 4Q,m’P, ]+ 4m*(Q,0,8 ' + Qm*)

C, = 2q/FXo,67'S, -8,Q,m* XQm®* - 5,;5™)

: 1+ (AICELE® - 5O sinhkh
S () } i :

xsinhkh, / w, (@, - 20¢) + 8" (K)L,}]

b; =[1/ P} (P} + P} )[-4m’Q,P, (P} + P} ) + P} {~2m’ (Q;P, + 2Q;F;)

-2Po,8™ + (S + S)}]

b, = [1/B}(B} + P)I4m*Q} (B} + B} ) - B {-2m*(Q,P, + 2Q,P,) - 4m’Q,P,}
x{-2m*(Q,P, + 2Q,P,) - 2P,0,6 + (S} + 82)} + 4P} (Qum’c,87 + F} -5 ™)]
b, =[1/P} (P} +P; )][(4m’Q: +P2){-2m*(Q,P, + 2Q,F,) - 2P,0,8™ +(S} +83)}
—(1/ F*Xo,87'S, - m*Q,8,)*(m’Q, - 5,8™)%]

and

b, = [1/ P2(P} + P)][16m’Q, (m*Q, - P,Xm’Q,0,6 ™ +F —o(s7)]
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