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Abstract

The proBlem is formulated and solved based on the linear perturbation techniqhe. The
stability criterion is derived and discussed. The analytical results are confirmed numerically.
The uniform magnetic fields interior and exterior the jet have stabilizing influences for all
modes of perturbation. The varying transverse magnetic field interior the model is
stabilizing or not according to restrictions. The radii ratio of the gas-liquid cylinder has a
tendency for stabilizing the model. As the axial magnetic fields intensities interior and
exterior the gas jet are so much strong than that of the transverse magnetic field and
adapting the cylinders radii ratio the instability of the model is suppressed and stability sets
in.
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1. Introduction

The stability of a hollow jet endowed with surface tension has been indicated by
Chandrasekhar (1981) for axisymmetric perturbation. Drazin and Reid (1980) have given
its dispersion for all modes of perturbation. Kendall (1986) performed neat experiments for
examining the capillary instability of bounded hollow jet. Radwan (1988) and (1997)
extended such works by investigating the stability of a hollow jet analytically under the
influence of capillary force in addition to other forces. Such a model has interesting
applications in several domains of science, cf. Kendall (1986).

Here we intend to investigate the magnetodynamic stability of bounded magnetized
hollow jet pervaded internally by oblique varying magnetic field and surrounded by
uniform magnetic field.

2. Formulation of the Problem

We consider a gas ¢ylinder of (constant pressure) radius a, immersed in a liquid
bounded by cylindrical wall at distance b (with0 <a<b).
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The matter inside and outside the cylinder are assumed to be penetrated by the
magnetic fields

Ht =(0, BH_t/a, aH), M
H! =(0,0, H,) | @

wheree, B are the internal magnetic field parameters while quantities with the superscripts
g and f indicate variable inside and outside the cylinder. The components of H® and H! are .
taken along the utilizing gylindrical coordinates system (r, @, z) with the z-axis coinciding
with the axjs of the cylinder, The liquid is assumed to be incompressible, non-viscous,
perfectly conducting and with censtant magnetic permeability W. The liquid matter is.acted
by the pressure gradient and Lorentz forces, while the gas medium is acted by the
electromagnetic force only in addition to the gas constant pressure P¢ .

The magnetodynamic basig equations for an ideal fluid appropriate to the present model
are the following:

In the liquid region:

p[ L+ lu+V)y=-Voru(Vam)an 3)
V.u=0, (4)
?%=(H~V)g-(g-V)ﬂ, | (%)
V.H=0, (6)

V.H* =0, . (7
VAHE=0. (8)

Here p, u and p arg the fluid mass density, velocity vector and kinetic pressure, H is the
magnetic field intensity in the liquid medium and idem H&®in the gas region. The equation
of motion (3) may be written in the form::

aa—‘f+(u.V)g-§(u.V)_H.=-vn | ©)

with

nelslm.m (10)
Byt 1)
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where, pIT represents the sum of the kinetic and magnetic pressures. One has to refer here
also that equations (4) and (6) have been used for obtaining equation (5) from Maxwell’s
electrodynamic equations. The fundamental, equations, (3)-(7) are solved and upon
applying appropriate conditions at r = a, the unperturbed liquid kinetic pressure
distribution p is given by:

H'.’

P,=E (ot 4 p7- 1) 4 e ‘ (1

where, P is positive as 2 + 22 1 as P2 is extremely small.

The first'term on the right-side of equation (11) is the contribution due to the Lorentz
forces, interior and exterior the gas jet influence while the term Pt is the gas equilibrium

constant pressure.
3. Perturbed state

For small departures from ths unperturbed state, every variable quantity Q(r, 9, z; t)
may be expressed as:

0,9, z;0)=0 (N+eQ (r, 9, B 1),[0|<< O, (12)

Here Q, represents the unperturbed part and Qis a small fluctuating part due to
perturbation where, Q stands for u, p, H and H:. By an appeal to the expansion (12) and
utilizing the basic equauons (3)-(8), the linearized perturbation equations are given as
follows.

e In the liquid region:

du

Pl5t]=-VP +u(VAH)AR, (13)
¥ o sl (14)
a?{':VA(g'/\ﬂo)+VA(gUAH,), (15)
V.H =0 (16)

V. H=0 17

VAH = (18)
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From the viewpoint of the expansion (12) and upon considering a sinusoidal wave, the
perturbed radial distance of the gas cylinder is given by:

r =Ry + R ' , (19)
with
R, =¢ expli(kz+mp)+at] : (20)

Here, R} is the elevation of the surface wave normalized with respect to Ry, €, is the initial
amplitude with ’

e=g explot] ' 21

is the amplitude of the surface wave at time t where k and m are the longitudinal and
transverse wavenumbers.

By the aid of the expansions (10) and the time-space dependence (20) and from the
viewpoint of the stability theory, Q (1, @, z;t) could be expressed as:

Q, (r,9,z;)=Q, (N exp [itkz+ m@) +ot] (22)

This means that every relevant perturbed quantity could be expressed as an amplitude
function of r times exp [i(kz+m@) + ot]. Consequently the linearized perturbation equa-
tions (13?-( 18) are simpliﬁed and solved. Apart from the singular solution we have

T (23)

y =8 VI 24)
plot+q]

M, (r. @, z; ) =[AI (kr)+Bk_(kr)] € exp[i (kz +me) + ot] (25)

HE=C va (k) &, exp i (Kz + m@) + m]) (26)

Here A, B and C are constants of integration to be determined, while Iry(kr) and kp(kr) are
the modified Bessel functions of the first and second kind of order m.

4. Dispersion relation

The solution of the basic equations (3)-(8) in the unperturbed and perturbed states
represented by equations (11) and (23)-(26) must satisfy appropriate boundary conditions.
Under the present circumstances these boundary conditions are given as follows.
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4.1 Kinematic boundary conditions
(i) The normal component of the velocity vector u must vanish across the wall atr =b

(ii) The normal component of the velocity vector must be continuous across the gas-liquid
interface at r = a. These conditions read:
ar

= atr=a 27
N,-u +N, g = 7
0 atr=b (28)

from which ‘the constants A and B may be identified at once.
4.2 Magnetodynamic boundary condition

The normal component of the magnetic field must be continuous across the interface

(19atr=a, ie.
N,.H +N .H =N .H:+N, . H (29)

6t ==

This condition gives directly the constant C.
4.3  The pressure balance

The normal component of the total stress tensor must be continuous across the gas
liquid interface (19) at r = a. By applying this condition, which is some compatibility
condition, the following dispersion relation is established

. HH?

2= o
O =

-x*+ M _(x,y)

m

- B +{mp + ax)} o n (30)

xI (x)

where x (= k a) and y (= q x) are longitudinal dimensionles§ wavenumbers. The combined
Bessel function My (x,y) is defined by:

Mm (X,y) =X (LT)'/L:;‘) (31)
with

L =10 (0 KL () -1 ) K, (), (32)
L =1, 0 K, ) - 15 () K,, (%) (33)

m m m

q="Db/a (34)



218 Ahmed E. Radwan, Samia S. Elazab, Wafaa M. Hydia

5. Stability discussion

Equation (30) is the degired dispersion relation of magnetodynamic stability of
bounded hollow jet, of negliéible motion, ambient with liquid medium acted by the
electromagnetic forcgs. By means of this equation the stability and instability restrictions
of the present problem could be identified. The transition points from the oscillation states
to those of instability of the model may be obtained from equation (30) such that 6 = 0.

The relation (30) relates the temporal amplification ¢ or rather oscillation frequency ®
as o(= i w) is imaginagy with the fundamental quantity (uWH?/p 2% '* as a unite of time, the
modified Béssel functions Im, K and their derivatives, the azimuthal and longitudinal
wavenumbers m and x (= ka), the magnetic field parameters o and B and with the
parameters p, W, a and H, .Now returning to the relation (30), the influence of the axial
magnetic field acting interior the bounded hollow jet model is represented by the term - x2
following the natural quantity p H:/ pa? in the right side of equation (30) It has always a
stabilizing influence and this influence is independent of the perturbation.

The influence of the gas magnetic field is represented by the terms including o and B, i.e.
the terms: '
2 2 I (x
(" + (mp + oxf 5 W ey (35)
xI Qx) :
The influence of the transverse gas magnetic field depends on the sign of the terms in ,Bz’
i.c. the terms in equation (35) as o = 0 which are

(_ Bz + mgBZ ;(L[“?%) RERY) (36)

We may prove that My, (x, y) > O for all values of m > 0 and any values of x>0 and y > 0,

see equation (31). The influence of the axial gas magnetic field is represented by the terms
in &, i.e. the term in quantity (35) as B = 0 which are

e L, 0071, (0] M, () >

m

From the recuirence relations (¢f. Abramowitz and Stegan)
2K, 0 =-K,, (0-K,, () (38)

m-1
2L )= 1, x)+1, ) (39)

m m+1
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It is clear that K,'“ (x) is always negative and I,'“ (x) is never negative for x > 0. The function
K,, (x) is positive definite and monotonically decreasing while In(x) is always definite for x
> 0 but monotonically increasing.

Therefor. for 0<q <1 the inequalities
-K () <- K (y) | (40)

Lx)>-1 () (41)

are satisfied for x # 0. It follows for x # 0 that

' r ’ ; ’
LOKO-LOK ] 5, _

M (xy) = :
100K - K, )

m

By an appeal to the relations (38) and (39) and the inequality (42) for equation (37) we
lind that the axial gas magnetic field is stabilizing for all values of o, x > 0, y > 0 not only

in the axisymmetric modes m = 0 but also in the non-axisymmetric modes m > 1.

Moreover, in general, €oncerning the varying gas magnetic field contribution (35): the
term BZMy, (x,y) is always positive as explained before, thus it is always destabilizing. The
last term (mﬁ + OLx)2 [Im (x)/ x I; (x)J M_(x,y) is always negative, so it has stabilizing
influence. However, if mfjox is negative, then (mP + ax)? is smaller than otherwise and
thus less stabilizing. The stabilizing influence of the last term vanishes when mp + ox = 0,
in this case, the growth rate @is the independent of & and only the destabilizing effect of
the azimuthal field remains through the term 2.

Some of the.foregoing analytical results are confirmed numerically. The dispersion
relation (30) is formulated in a dimensionless form and inserted in computer for calculation.

First as a simple limiting case when a = b, here we have only a gas jet of negligible
motion and the dispersion relation is reduced to:

2

,_uH?

= e — )(2
pPR;
This indicates 5that the model will be stable not only for short wavelengths but also for very

long wavelengths.

The cases with 1 < q < e must be calculated numerically to determine exactly the stable
and unstable domains for different values of the problem parameters as will be discussed in

the next section.
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6. Numerical Discussion

The problem is investigated numerically for the most important axisymmetric mode m =
0, upon using the stability criterion (30) in the computer.

The values of o and { are taken as (o, B)=(3,5), (2, 5) and (1,4). For each pair values of (o,
B), the radii ratio q(= b/a) of the fluid and gas cylinders is considered to be q = 2, 3, and 4.

For (o, B) = (3, 5), (2, 5) and (1, 4), q = 2: it is found that the unstable domains are
0 <x < 16589, 0<x <4599 and 0 < x < 7.9518 while those of stability are
1.6589 < x < 0, 4.5996 < x < =0 and 7.9518 < x < o> where the equalities are corresponding
to marginal étability states (see Figure 1).

For (a, B) = (3, 5), =2, 3 and 4: it is found that the unstable domains are 0 < x < 1.6589,
0 <x<1.674 and 0 < x < 1.6744 while those of stability are 1.6589 < x < o0, 1.674 < X < o0
and 1.6744 < x < oo. * " (see Figure 2).
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Fig. (1) -
Stable and unstable domaines for q =2

— @B=6G9
------- (@.B)=(2.9)
mmes (@, B)=(L4)
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Fig. (2)
Stable and unstable domaines for (a, B) = (3, 5)
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