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Abstract.

Mathematical modelling and numerical analysis of the classical Duffing
oscillator with four different dry friction dampers is presented. Then the
influence of the different types of friction characteristics on the system dynamic
responses is systematically examined pointing out a necessity of proposing a
new dry friction model, which is constructed based on the non-reversible
approach [4,8]. A comparison between the dynamic responses for all models
including the new one is provided..

1. Introduction.

Dry friction appears in many mechanical systems met in practice by most
engineers. Usually, this is unnecessary effect and most unwanted one. For many
years the topic of dry friction has been actively researched with many attempts
to identify the causes of unwanted behaviour such as squel of car brakes,
extensive wear of the cutting tools, and others. From the mathematical point of
view dry friction problems are also cubersome as the inclusion of the dynamics
of dry fiction implicates appearance of the discontinuous differential equations,
where the character of this discontinuity depends upon the friction character
adopted. In general there many different types of dry friction models and it is
crucial to appropriately chose one which suits best to the modelled problem.
For example if one considers dynamics of the system where the relative
velocity practically remains constant, there is no need for a sophisticated dry
friction models and even the simplest one described by the Coulomb law will
suffice. However in many cases the variation of the relative velocity is large
and often the velocity changes its sign. In such situations the chosen model



128 Andrzej Stefariski, Jerzy Wojewoda, Marian Wiercigroch

must account for the transition ftom static to dynamic friction and must provide
a means of guiding the system through zero relative velocity. These types of
mathematical models should be able to predict both phases of stick with a
higher friction coefficient and slip where this coefficient is smaller. These are
the reasons why systems with dry friction possess many different types of
dynamical behaviour, such as periodical, non-periodic, chaotic and sometimes
even static responses [2, 6, 7, 9, 11].

A practical engineering approach, endebted to Coulomb simplifies the
friction force to constant value directed opposite to the relative velocity of the
contacting bodies. Such force can take two values with identical level
butopposite sign only. Newer experiments show non-linear dependence on the
contact velocity rather than the constant one. That was why most efforts were
directed to built non-linear friction models and to determine differences in
maximal values of the static and dynamic friction forces — see [3]. Another
attempts to determine different types of friction characteristics — showing
dependencies on the relative acceleration on the contacting surface — so called
non-reversible friction characteristics and association between friction
characteristics and system motion character are shown in (1, 4,8, 10].

In this paper we present a comparison between the dynamical responses of
the classical Duffing oscillator equipped with additional dry friction dampers
described by the following friction models:

i. classical Coulomb,
1i. model proposed by Popp - Stelter,

iii. non-reversible friction characteristics,

iv.  novel model of dry friction (where the relative acceleration value is
taken under consideration).

This comparison is facillated by a systematic bifurcational analysis of the
above-mentioned Duffing oscillators.

2. Mathematical Modelling and Numerical Analysis.

The subject of the current studies is a classical Duffing oscillator to which
a dry friction damper has been added, which is depicted in Fig.1 The dynamics
of the systems can be described by the following second order differential
equation

mi + kx® + cx + Nfsign(x) = F cos(w?) (1)

where: m - oscillator mass, kx* - non-linear stiffness, ¢ — damping coefficient,
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© — excitation frequency, F — amplitude of the excitation force, N — normal
pressure force, f - friction function. Relative velocity of the friction surfaces is
equal to the momentary velocity of the system x .

After dividing both sides of the equation (1) by the value of the mass and
introducing: x=x,, X =x,, a=k/m, h=c/m, p=F/m, €=N/m, the analysed system
can be transformed to a set of two first order differential equations given below

X =Xy,
1 =% @)

X, = pcos(@t) —ax; — hx, — &fsign(x, ),
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Fig.1. Duffing oscillator with dry friction.

For the purpose of constructing the bifurcation diagrams through a means
of numerical simulation constant values of the parameters were assumed —
a=1.00, ~=0.10, p=10.0, ®=1.00, while the value of the normal pressure € was
selected as a the branching parameter. The friction force function was described
by four different models which will be introduced and explained below. Each
friction modelled is followed by a bifurcation diagram correcponding to it.

2.1 Coulomb Model (Model I).

This model bases on the classical Coulomb approach, where the friction
function — Eq.(3) takes two different constant values for the stick () and slip

(f2) phases.

s x=0
f—{fd’ >0 A3)
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A graphical portrait of the Coulomb friction as a function of the relative
velocity for the positive part of the abscissa is shown in Fig.2, where Fig. 3
presents a corresponding bifurcation diagram.
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Fig.2. Coulomb
characteristic of
. friction; £,=0.30,
f~=0.25.
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Fig.3. Bifurcation
diagram showing
the dynamics of
the Duffing
oscillator with dry
friction descibed
with the Coulomb
model (Fig.2)
while normal
pressure increases.

2.2 Popp - Stelter Model (Model II).

In this model the dependence of the friction coefficient on the relative
velocity has a non-linear character as shown in Fig.4 described by the following
formula [3]
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= fs—fd =2
f—(1+nll‘*i+fd+n2x ) (4)

Similarly to the previous model a bifurcation diagram has been
prepared. The differences between them will be outlined in the Discussion and
Conslusion section.
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Fig.5. Bifurcation diagram showing the dynamics of the Duffing oscillator with
dry friction described with the Popp — Stelter model (Fig.4) while normal force
increases.
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2.3 Non-reversible friction characteristics (Powell & Wiercigroch, Model

1.

This model assumes a non-reversible characteristics of the friction force
(Fig.6) [4, 8, 10]. Here the friction force dependence on the relative velocity are
described with two functions — first in the relative acceleration increase phase
(f.), and then in the phase when the relative acceleration decreases (f)),

respectively — Eq.(5)

e Fos sgn(X)>0
- fis sgn(x)<0

f. fd[l g, S~ = fa exp(— alxl):l

fi= fuli-exp(-5|q)]

025

02

(3}
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)

Fig. 6. Friction characteristics in the Powell — Wiercigroch model; f=0.30,

£=0.25, a=5, b=20.
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Fig.7. Bifurcation diagram presenting the dynamics of the Duffing oscillator
with dry friction for the Powell — Wiercigroch model (Fig.6) while normal
pressure increases.

2.4. Novel model of dry friction (Model IV).

This model arises from the non-reversible model III, preserving the non-
reversibility aspect with an addition saying that the friction characteristics is
dependent not only on the relative acceleration sign but also on its value. Such
dependence has been observed in the real experiment [6]. The proposed novel
model consists of a symmetrical non-reversible characteristics with an auxiliary
assumption that the parameter in the exponent is a function of the relative
acceleration. The model is described with the following equations

e Tos sgn(x) >0
“1f,, sgn(x)<0

fo= f,{l +%ﬁexp(~ a(k‘)lfcl)]

d

fi=1 l:l "f;;—f‘i‘exl’(— a(ﬂ'*'):\

d
(6)

where a,, a; >0.
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As the consequence of the introducing of the relative acceleration into the
dry friction model a closer relation between the friction characteristics and the
system dynamics occurs, and this is shown in Figure 8. Friction characteristics
for different values of the £ parameter and respective phase portraits are shown
and clearly presents that friction function given by Eq.(6) is a picture of the
system attractor [this sentence is unclear and requires a futher explanation]

a) b)
035 | 0.35 ¢

¢

¢

Fig.8. Friction characteristics for the Novel friction model and the phase
portraits of the attractors for the assumed different € parameter values; a) €=0.1,
b) €=0.6, c¢) £€=2.0, d) £€=20.0; £,=0.30, £,=0.25, a;=12, a,=0.10.
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Fig.9. Bifurcation diagram presenting the dynamics of the Duffing oscillator
with dry friction described by the Novel friction model (Fig.8) while normal
pressure increases.

3. Discussion and Conclusions.

The basic aim of this study was the investigation of the influence of
different friction models on the dynamical behaviour of a nonlinear mechanical
system (Duffing oscillator). Four different dry friction models, which differ in
a level of complication of the friction characteristics description are introduced
and analysed by a means of bifurcation diagrams. The analysis was started with
the simplest Coulomb model (Model I) and concluded with proposing a new
model (Model IV), which in the authors’ view might better reflect the dynamics
of the system for the cases when the system oscillated around zero relative
velocity. This is a subject of a separate study and will be reported later.

In the described numerical experiment the range of the friction coefficient
changes is close to each other what makes the comparison of the results
possible. It allows to draw a conclusion that any choice of the model results in a
similar long-term dynamics of the system — the shapes of the bifurcation
diagrams are almost the same (Figs 3,5, 7, 9). All diagrams show the loss of
stability of the chaotic solution into the periodic one takes place as a return
period-doubling bifurcation. The most important factor for the system
behaviour is the normal pressure parameter €. A larger normal pressure means
the larger friction force and higher energy dissipation level. The numerical
experiment carried out shows that the increase of friction damping leads to the
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destruction of chaotic dynamics of the system and then the periodic solution
appears.

The above analysis allows for the general conclusion — a friction model
does not decide on the long-term dynamical behaviour of the Duffing oscillator
with a dry friction, as the most important for modelling is a mean friction force
level. Therefore, we can assume that for engineering applications the classical
Coulomb approach is a good enough approximation of the real friction function
if one is interested in examining the long-term dynamic responses.
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