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Summary The paper formulates a nonlinear model of physical properties of material,
assuming its small strains. Based on strength hypothesis of stability of inner equilibrium
the theoretical values of yield point and tensile strength have been determined for the
material. The relationships obtained in the work served for determining material
constants of the assumed model of the material.
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1. INTRODUCTION

The paper [7] formulates the strength hypothesis of inner equilibrium stability. It consists
in assumption that the reason of destruction or failure of material is a loss of inner equilibrium
stability of deformed material. According to the hypothesis examination of stability of
deformation state of a material characterized by nonlinear physical properties allows
theoretical determining the strength properties of the material and calculation the yield point,
as well as tensile strength, depending on material parameters. Hence, for an assumed model of
physical properties the material parameters may be defined based on experimentally
determined values of the yield point and the tensile strength.

Experimental research performed for many materials of important technical meaning, as
e.g. steel, cast-iron, non-ferrous metals and their alloys, confirmed linear elasticity of
volumetric deformation within large range of the loads. For non-dilatational strain such a
property is observed in smaller range. Therefore, 2 model might be established that would be
able to depict the properties of many real materials ascertained in strength tests.

One of contemporary methods of defining physical properties of materials consists in
expressing strain energy density as a function of invariants of the state of strain [4]. The
method may be used for formulation of nonlinear model of material.
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2. NONLINEAR MODEL OF PHYSICAL PROPERTIES OF MATERIAL
Invariants of state of strain in linear theory of elasticity [2] are given by the formulae
Ji=¢g +¢g e,

1
J, =€E, +EE +EE, —z(y.jy+yﬁ,+7;), 2.1

1 1
Ty =L+ YoV nYu— 7 Y +E YL +EY),

where ¢,,€,,€,,7,,,7,,, 7., are the components of the state of strain.

The invariant J; represents relative change in volume of the body. If the body deformation

is considered as a sum of pure volumetric strain and pure non-dilatational strain, then the
invariants of equivalent pure volumetric strain of strain components in main directions

=€ =¢=¢, (2.2)
where
1
E= 3.11 : (2.3)
have the values
1 1
F=3e=J, JM=3t= -3-J,2, I =g = —2—7—./3 ; (2.4)

Let J{”,J{",J{” be the components of generalized displacement related to the change in
volume of deformed body. As show the equations (2.4), they depend only on the invariant J, .
Hence, taking into account the assumption

J,=J+J9 ) ie{l,2,3}, (2.5)

the components of the generalized displacement related to the change of the form, are given
by the formulae
JHsT I, il (2.6)

where the component Ji*) is equal to zero. The values J{”, J$ may be considered as the

components of generalized displacement corresponding to pure change of the form. From this
one could conclude that strain energy of linearly elastic material is a function of generalized

displacements J,,J;, J{, that finds confirmation in Helmholtz formulae, expressing the
strain energy of linearly elastic material as a sum

W(J,,J0) =W () + WO (), Q2.7

where the energy of volumetric strain is defined by the formula

K
W‘”’(J,):—Z—Jz, (2.8)
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while the energy of non-dilatational strain is
WOy =-2GJP. (2.9)

The Helmholtz’s constant K - the bulk modulus, known as well as volumetric modulus of
elasticity, and the Kirchhoff’s constant G - the modulus of rigidity, known under the name of
shear modulus or Lame's constant f, may be expressed by Young's modulus E and Poisson’s
ratio v by means of the formulae
ot o g B
31-2v) 2(1+v)

(2.10)

For nonlinear material it may be assumed that physical properties are determined by the
function of strain energy, in the form of a sum

W(J,,J$) = WO )+ I, @11

where the volumetric strain energy is given by the formula (2.8), while the non-dilatational
strain energy differs only slightly from the function defined by the formula (2.9). The
difference grows with increasing non-dilatational strain energy. Let the non-dilatational strain
energy be expressed by the formula

YR (O
_W;g_q , 153

7O () = O (T —
I =W (L) ﬂWo[ 7,

where material constants o and 3 are numbers, and W, is an optional reference value. o is a
positive number not equal to 1, while ¥, is a physical value defined with the same units of
measure as the function of energy density. Thus, a new model of a material of nonlinear
properties is defined, for which the function of strain energy may be written in the shortened
form

W=w®+ WO —qw*, (2.13)
where

n=pBpw". (2.14)

The function, for B approaching zero, transforms into the function of strain energy of linearly
elastic material.

Further part of the paper is devoted to investigation of stability of inner equilibrium of
deformed material of physical properties defined by the function of strain energy expressed
with the formula (2.12). Energetic definition of the so-called material stability may be found
in the book of Jaunzemis [1] — page 505. Nonlinear theory of elasticity [8] applies the
definition for searching for the constraints of material functions. On the other hand, the
postulate of absolute minimum of total energy of a separated fragment of deformed body
serves the purpose of essential justification of Coleman-Noll conditions and strong elipticity.
A method of research of stability of the material model with the use of the conditions is
presented in the papers [5, 6]. In the present paper the method of examination of stability
described in detail in the book [7] will be applied. The method resolves into examination of
the sign of second-order variation of the function of energy density. Therefore,
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W =W +(1—anw® *Yew (2.15)
and

W =W +8W —an W (a-1)6W + WOSW)]. (2.16)

Having determined values of function variation increase for six components of the state of
strain and having assumed B <0, one may find that for & >1 equilibrium state of the
deformed material is stable and it does not depend on the state of strain. For the other cases
stability of inner equilibrium of deformed material depends on energy of non-dilatational
strain and requires an additional analysis. For this reason the value may be considered as a
measure of the effort, as, after exceeding a certain level of the energy of non-dilatational
strain, the state of material deformation becomes unstable and should be considered as
dangerous. ‘

In order to estimate the strength condition resulting from the present analysis and to define
the level of energy of the non-dilatational strain leading to unstable state of inner equilibrium
one should assume, for the sake of simplicity, that components of the strain are subject to
disturbance, in proportion to their current values, i.e. it should be assumed that

%:%:...=%=6. (2.17)
x y Y

Let us examine stability of inner equilibrium with regard to the possibility of appearance a
disturbed configuration defined by the condition (2.17). This is equivalent to the question,
whether a spontaneous change in system configuration without supply of energy from outside
is possible and, if so, under what condition, assuming that the change is subject to the

conditions (2.17). Hence
SW =205, W =2wI8, WY =2ws?, (2.18)

and from the relationship (2.16)
SW=2[W"+W - Qa-1)anw]8. (2.19)
Inner equilibrium will be unstable {7] if
"+ W - Qa-Doan W <0, (2.20)
or, taking into account the relationship (2.13)
W-(e-D)Qa+)nw*<0. 221

The condition is fulfilled for f >0 and @ >1 or f<0 and a <1, if

we > W, (2.22)
where critical value
1
w a
5) - SECRR 2
o [(a—l)(2a+1)n] ’ B2

Hence, the state of strain is unstable and material may be damaged, when the energy of non-
dilatational strain exceeds a critical value
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W =W —nwee. (2.24)

Attention should be paid to the formulation used. It does not mean that for less values of
energy of non-dilatational strain the material is protected from breaking down. As the
conclusion has been drawn having reduced the system to one degree of freedom, an
experimental verification of the above formula becomes necessary. However, it was shown
that a dangerous state of the material defined by the relationship (2.11) depends on the value
of the energy of non-dilatational strain.

As it results from the formulae (2.23), (2.24), and (2.14) the value of the energy of non-
dilatational strain conducive to instability of the state of strain depends on the coefficients a
and f characterizing physical relationship for given material. The values serve as material
constants and may be determined by laboratory examination of the material. The method of
determination of these values is presented in the next chapter.

It could be supposed that local fulfillment of condition of loss of stability of inner
equilibrium in the body of non-homogenous state of strain is conducive only to local change
of state of strain and transition to a new stable state of equilibrium in given point and its
environment. Nevertheless, such a state should be considered as dangerous from the point of
view of the strength. On the other hand, the body of uniform state of strain that does not fulfill
the condition of stability of inner equilibrium will be damaged or destroyed.

Defect of the material means temporary loss of its cohesion occurring in result of shift of
adjacent material layers during the process of plastic flow, resulting in its durable
deformation. The process is characterized with change in state of strain with conserved
volume. This feature of the material will be used in the next chapter in order to determine the
condition conducive to initiation of the process of plastic flow. In the end of the process the
material is hardened that is related to blocking of its ability for further changes of the state of
strain in result of sliding between the layers. Destruction of the material means durable loss of
cohesion and consists in separation of material layers, resulting in a break or fracture in the
material.

3. EXAMINATION OF STABILITY OF STRAIN STATE
WITH IMPOSED CONSTRAINTS

In the case of axial tension, the unit elongations in main directions of the strain are given
by the formulae
£, =¢€=-Ve, 3.1

however, it should be noticed that in the material of nonlinear properties the value ¥ is not
constant but depends on the elongation &;. If the relationships are considered as the
constraints imposed on the system, analysis of the triaxial state of strain shows that the
conditions (2.17) are met.

Invariants of the state of strain J;, J, and the value J é’) are expressed with the formulae

V+1)?
( )8_

J=(1-20)8, L=FF-2e, S =-rE (3.2)
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Calculating the functions according to the formulae (2.8) and (2.9) one assumes that v is
determined for small deformation in the material. Then

1-2V)E 1 E
o < U=2VE . ) g, W¥= dnk +3V) . (3.3)
In accordance to the condition (2.20) inner equilibrium is unstable, when
1 1+v)E ,]°
EEef—(Za—l)an{(T)—ef] <0. (3.4)
Hence, for >0 and @ > 0.5 or <0 and & < 0.5, theoretical value of the strain is
v.E Ay
£, = {—‘;— [(Qa-Danv,] “-'} ; (3.5)
where
2(1+v
V, = —(3—) s 3.6)

for which the loss of stability of inner equilibrium occurs in uniaxial tension test.
On calculating the derivative of the strain energy function given by the formula (2.13) with
regard to the strain component € the stresses corresponding thereto may be determined as

d a, d
- iy 5 nely 2 prs
o, " ) +(1-an W )as1 w©)y. (3.7)
Taking into account the relationship (3.3) one gets
17
o(g)=[1-anv, (—2£E£,2)"‘"] Eg, . (3.8)

Strain component ¢, corresponding to maximal stress for the state of uniaxial tension may
be determined from the necessary condition of the extremum

do,
— =0, 39
i (3.9)
that leads to the relationship
1+v)E]*
E—z(za—l)anF}—)} g =g, (3.10)

Comparing the above condition for extremal stress in uniaxial tension to the condition of
loss of internal equilibrium stability (3.4) one could remark that critical state shall occur for
the strain corresponding to maximal stress R, that may be determined during static tension
test. It results that

1
2001

R,=0\(g,)=(1- )EE,,. (3.11)
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The assumption expressed by the condition (2.17) is equal to ascertainment that for
compressible materials the volume of disturbed system differs compared to its volume for
initial state, as the following relationship occurs

8J,=J,6#0. (3.12)
On the other hand, if the condition (2.17) is replaced by
8J,=0, (3.13)

that is equivalent to additional constraints imposed on examined system in the form

J, = Const , (3.14)

and results in reduction of the number of degrees of freedom from 6 to 5, the following
relationships occurs

61 =8, FIA=§, (3.15)
and

WY =-2G8J,, &WY=-2G8J,, &W"=0. (3.16)

The most important among the assumptions of the theory of plasticity states that only the
form of the body may undergo plastic changes [3). Therefore, one can assume that plastic flow
caused by sliding between material layers is related to deformations under constant volume.

Postulate (3.13) does not mean that the material is incompressible. It means that the subject
of investigation is confined only to a particular state in which the material of any properties
takes such a disturbed configuration that is characterized by the same volume as for its initial
configuration. Such a behaviour of the material corresponds to its plastic flow. The material in
this stage of deformation does not change its volume. Hence, it is assumed that the invariant
J, remains constant, according to (3.14), only for approaching the condition for which the
plastic flow of material is initiated.

Taking into account (2.16) one gets

W =2G{-8%J, - an 2G(-2GJ") 7 [(a - 1)8J, + S8 L1} 3.1
The analysis will be limited to symmetric state of strain, according to the assumption

£ =6. (3.18)
Then

1
J® =—§(e,—ez)2. (3.19)

Moreover, if (3.18) is considered as constraints imposed on the system, then, taking into

account
b€, + 0g, = —0¢, (3.20)
resulting from (3.13), one gets

¢, = J¢, =—%6£,, (3.21)

and
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3
8J, =—(¢,-¢&)0¢, &J,= —55812, (3.22)
while the relationship (3.17) takes a form

W =3G{1-Qa-Dan[%G(e -¢&,) "6, . (3.23)

Let the state of strain in the moment of loss of stability be characterized by (3.1), for the
coefficient ¥ approaching the number v. Then the condition of inner instability may be
expressed by inequality

1+vE 1"
1—(2(x—l)an{(+Tv)£f] <0. (3.24)
From there for B >0 and &> 0.5 or B <0 and & < 0.5 the strain amounts to
L
VOE 1172
o ——2—[(2(x~1)an] ete (3.25)

for which under uniaxial tension of the material the plasticizing is initiated. Taking into
account the formula (3.8) one can determine theoretical value of plasticizing stress for the
case of uniaxial tension

VO

R = =(1- Ee,. :

= 0,(6) = (1- 52 Ee, (3:26)
The ratio of R, and R, is equal to
Re
r e =[1+{1-vy)plv,’, (3.27)
where the value v, is given by (3.6), while
1

= ¢ 3.

P=3@-D (3.28)

Detailed analysis of the formula (3.27) provides many interesting general conclusions,
important for practical purposes. It results from this, among others, that in case of ideally
incompressible material the value of the ratio r is equal to one. It should be remembered that
this conclusion is a result of certain simplification assuming that the material represents
idealization of the properties never achieved. Therefore, it cannot be experimentally
confirmed or denied, as there are no ideally incompressible material. Let us only confine to
quote a particular value of exponent ¢, defining mathematical model expressed by the formula
(2.12), calculated on base of above relation (3.27). Assuming Poisson's ration for aluminium
v =0.34 and the ratio r =0.53, one gets a=1.037.
Assuming the module E as a reference value W, of the formula (2.12) gives

n=BE" (3.29)

and the formulae (3.25), (3.5), (3.8) may be written in an abridged form
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e, =(2) 2 [Qa-Dafl”, &,=(3) [a-Dapv)”, (330)

0,(6) =[1-20B ()& ] Ee,. (331)

Knowing additionally the value of one of characteristic stresses R, or R, measured during
basic strength tests of the material and Young's modulus E determined for small deformation,
it is simple, making use of (3.11) or (3.26), to calculate the value of coefficient B occurring in
the formula (2.12). Assuming for aluminium E=0.72- 10°MPa and R, =50MPa one gets
B =139. Hence, for many materials of technological meaning the values of moduli

characterizing their nonlinear physical properties may be determined on the ground of uniaxial
tension test. Knowing these moduli and making use of nonlinear model of the material
determined by means of the function of inner energy density one can examine stability of any
state of strain [7] and indicate dangerous regions of the body, with regard to their state of
stress or strain.

4. CONCLUSIONS

Examination of inner equilibrium stability of deformed material is important for the
process of mathematical modeling of physical properties of the material.

The paper shows that mathematical model of physical properties of material enables
considering its strength properties. In order to achieve the goal should be used the methods of
examination of stability of strain state. The material properties described by the model should
be chosen with a view to achieving consistency between stable strain areas defined by the
model and the ones found during the strength test.

In the nonlinear model proposed in the work only four material constants are assumed. In
order to ensure more detailed representation of real properties of material a greater number of
the constants might be implemented that would allow fulfillment of additional conditions.
However, consideration of the conditions described in the paper and resulting from the
analysis of stability of the model is necessary, as they issue from the law of conservation of
energy, serving as a basis for investigation of material stability presented in the paper.
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