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Abstract :

The parametric excitation of surface waves on a liquid jet in the presence of an
axial periodic electric field is investigated . The method of multiple scales is used to
derive and analyze the necessary and sufficient conditions for stability . Owing to the
periodicity , resonant cases appear .Two parametrically nonlinear Schrédinger equations
are obtained for the resonance cases . The formula for the surface elevation is derived
in each case . A classical nonlinear Schrédinger equation is deduced for the non -
resonance case . Investigaticn of the stability criterion by nonlinear perturbation shows
that the periodic electric field has a stabilizing effect .
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1. Introduction : _

The capillary instability of a circular liquid jet was performed by Rayleigh [1] .
He deduced that the maximum growth rate of instability occurs when the wave number
k = 0.697. A great amount of work has been investigated on jet instability because of its
industrial applications . Yuen [2] examined the nonlinear capillary instability of a liquid
jet. His analysis revealed that the cutoff wave number which separates stable from
unstable disturbances is amplitude dependent . Nayfeh [3] used the method of multiple
scales to study the nonlinear capillary stability of a cylindrical column of liquid. Rutland
and Jameson [4] studied experimentally the distribution of drop sizes produced by the
break up of capillary liquid jets. Melcher [5] suggested the surface waves of the
capillary jet under the influence of electric field .

The object of the present paper is to discuss the nonlinear stability of electrified
liquid jet under the influence of the influence of an axial periodic electric field.

In the plane geometry , El Shehawey and Abd El - Gawaad [6-8] discussed the
instability of an interface between two fluids under the effect of a periodic electric field
. El - Dib [9] investigated resonance’s of interfacial waves in a nonlinear interfacial
instability of two superposed electrified fluids stressed by a time - dependent electric
field . The necessary and sufficient conditions for stability are deduced . Mahmoud [10]
studied the parametric third - subharmonic resonance instability in nonlinear
electrohydrodynamic Rayleigh - Taylor with mass and heat transfer .

In this presentation , we used the method of multiple scales to obtain two
parametric nonlinear Schridinger equations in the resonance cases.
2. Mathematical formulation :

We shall consider liquid jet with radius R .The inner and outer fluids have
densities and diclectric constants p©, € and p®, F® respectively . The fluids arc
assumed to be inviscid and incompressible . We shall use a cylindrical system of
coordinates (r, ©, z) . The gravitational force is neglected .

The system is imbedded in an axial periodic electric field in the direction of z -
axis:

E=(E,+ eE coswt)e, , ' 1)

in which E, is the electric field intensity , E is the amplitude of the periodic term, gis
a small dimensionless parameter and e, is the unit vector in the direction of z - axis . In

the equilibrium state , we shall assume that there are no surface charges at the interface
and therefore the surface charge density will be vanished during the perturbation .

All physical quantitics are normalized by using the characteristic length R and
1

the characteristic ime (pR’/T)? , where T is the surface tension and p® is the
density of the inner fluid .

The basic equations governing the motion are

Vip® =viy® =0, at r <1+ n(z1), )
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Vi@ = VP =0, at r>1+n(zt), 3)
where 1 denotes the free surface displacement above the equilibrium level, ¢ and
are the velocity and electrostatic potentials , respectively .
The boundary conditions at the free surface r = 1+ n(z,t) are :

(1) The kinematics boundary condition is :
o 5 oD ) @64)““” _

0, )]
ot or 0z 0z
(2) The tangential component of the electric field should be continuous at the interface :

M-
=T+l =0, ()

where [[ ]] represents the jump across the interface.
(3) The normal electric displacement is continuous at the interface :

ra"’nw[rna"wﬁusna“ a"[r”a“’n 0, ©)

@) The normal hydrodynaxmc strm is balanced by the normal electric stress . The
balance condition is then :
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where p = p'? /p.

We employ the method of multiple scales [11] to discuss the nonlinear stability
problem posed by the equations (1)7). We expand the various variables in ascending
powers in terms of a small dimensionless parameter & characterizing the steepness ratio
of the wave. The independent variables z , t are scaled in a like manner ,

Z,=¢z , T,=¢"t, n=0,1,23, ‘ (8)
and the variables may be expanded as
3 o
n(zt) = Ze“nn(zo,zl,ZZ,To,T‘,Tz)+o(e‘), ®)
n=1
3 .
§OE = N GPR Z,. 2, T, T, T wn(a"), (10)
n=1
3
Wiy g =Y e PO Z 2 2, T T T ) +0lE" ) (11)

n=1

Nayfeh [12] perturbed the surface deflection 1(z,t) in the form
n=en, +en, + M+ 12)



254

Y. D. Mahmoud

Because of the complexity of problems involving periodic terms, El-Dib [9] expanded
every order of the ahove surface deflection in the form

Nx = Mo + My +E Mgzt XK=1,2,.....), (13)
where
T =TNos M2 =N+ M M3 =Ny + Nz +Nizs (14)

where €,y + €N, + €’y +.....denotes the surface deflection in the absence of the
periodic electric field. We expand the quantities involved the boundary conditions in
Taylor’s series about r = 1. Substituting from (8) -(11) into (2)- (7), and equating the
coefficient of like power of &, we get the lincar as well as successive higher - order
equations. The hierarchy of the equations for each order can be deduced with the
knowledge of solutions of the previous orders. .

3.Linear theory:
The surface deflection in the first order problem n, is given by

N, = ;I(Z],Zz,To,T|,T2)elkZ° +CLC., -(1%)

in which k is the wave number and C.C. is the complex conjugate. The solutior. of the
first order problem is due to the lincar differential cquation which is satisfied the
unknown function p . This equation is given by ,

2
Pp WKL, MoKl gz o gy o, (16)
T b 03
where

p* =LK, (k) + pKy (k)L k),
e" (k) = B (KK, (k) + 9K, (K)o (k) -

Equation (16) admits the following solution:

202y Ty T T) = AZy 2, T, T)e 90T sCC an

in which ®,is the frequency of the disturbance and A is the amplitude of the
propagation wave and will be obtained later by the solvability conditions. The
dispersion relation for the linearized problem is given by:

o2 = KK () {kz e KGR ) s g )z} %)
p e"(k)
where I, , I, , K, and K, are the modificd Bessel functions. This dispersion relation

is obtained by Nayyar and Murty [13] . It is shown from the above equation that the
constant electric field has a stabilizing effect on the wave motion. We can deduce that
the periodic electric ficld has no effect in the first order problem. In order to study the
amplitude modulation, we consider ® 2 5 0 and proceed to the second order.

4. Second order problem:

By substituting the solution of the first order problem into the second order, we
get two cases. The first case is the non- - resonance case, when the disturbance
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frequency ,is away from the field frequency . The second one is the resonance
case, which produces when © is approaching 2w, .

The solvability condition in the non- - resonance case is given by:
oA G0, A

=0,
T, d& oz, , G9)

In the resonant case, we introduce: the detuning parameter o to describe the
neamess of ® to 2@ ,. Thus, we can write

® =20, +2e0. (20)
The solvability condition in the resonant case is given by:
oA dw, A . — -2ioT :
= i B v,
o & oz, oy Ae (1)
where
k ('é‘(l) ~(2))2
o, = ————EoEL (K, (KL, (k)K o (k). (22)
20,p7e"(k)

The uniformly valid second - order elevation can be written as:
n, =2S,AA +¥e elk% 4 QZA’eZ’(kZ°_m°T°) +C.C. (23)
where

k W _g@OyE E g ;

oL E F ) B 0 ok, o, @K, @ @ s cc,
m(co +2w,)p"e" (k)

29

S,and Q,are given in the appendix. We proceed to the third order problem to obtain
the equation for the evolution of travelling waves.

5. Third order problem:

We substitute the first and second order solutions into the third order equations.
In order to study this order, wcmustdlsungmshbetwocntwo cascs: the first case is the
non- - resonance case, when ®is not near w,and 2@,. The second one is the

resonance case which arises when o is approaching 2w, 0r @, .

(5.1) The non - resonance case:

By using (19), the solvability condition in the non- - resonance case is due to a
nonlinear Schrédinger equation that can be written as:
d 2 2 -
BB 00 L 0T B ATR AR A, 25)
aT, 8z, 2 dk* 9z’

2

R,

where R, , R, , R, and R, are lengthy and not included here . They are available
from the author.

We introduce the transformation:
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E=g(Z- ~—t) and 1= ¢’t, (26)
Substituting from (8) and (26) into (25), we have
oA  1d'e, 7°A > RAA+R,A=0.
Yo 2 &k’ o N
The solvability condition of the nonlinear Schrﬁdmgcr (27), is given by
2
R, ddk <0. (28)

This condition has been obtained by Hasimoto & Ono [14], Nayfeh [12] and Mohamed
& ElShchawey [15-18]. Mohamed and ElShchawey ([18] studied the
clectrohydrodynamic stability of a horizontal interface scparating two dielectric
streaming fluids subjected to a normal electric field. Based on the method of multiple
scales , two nonlinear Schrodinger equations describing the perturbed system are
derived. One of them is used to get the electrohydrodynamic nonlinear cut - off
wavenumber separating stable and unstable disturbances while the other equation is
used to obtain the necessary condition for stability and instability for the system. It is
noted that both electric field and streaming play a dual role on the stability analysis.

5.2 The resonance cases:
5.2.1 The case of ® near ©,:
In the resonant case when o ~ ®, , we introduce a detuning parameter
G, defined by :
©=w,+€0, . (29)

In this case, the solvability condition is due to the following a parametric nonlinear
Schrodinger equation

i, 78, L8O B g paiin el B B0
o 2 dk* o’ ~
where R, is lengthy and not included here. It is available from the author. To discuss
the stability conditions, we follow El - Dib’s [19] analysis. We assume that (30) admits

the time dependent solution: \

A=me O, 31
where m, is a real amplitude is given by

=0, (30

mi == 2 (OR, + R, +Ry). 32)

4

The right hand side of (32) must be positive, this is requires that

R,(0,R,; +R, +Ry)<0. (33)
To obtain the stability criterion, we perturb the solution (31) according to
A=[m, +o,&T)+iB, G0k O, (34)

where o,and B,are real functions. Substituting from (34) into (30), neglecting
nonlinear terms in o, and B, , we obtain
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d*w, 9°

oo, 1
R, 3{' “2' dkh—o ZRaﬂn =0, (3%5)
oB, 1d m
—R ; 5 dEz—— aEJZ 2R4mzcc1 =0, R (36)
Since (35) and (36) are linear equations, then their solution can be written in the form
o, (5, 7) = eI~ (37)
B &) =pie ¥ G38)

where q and Q are the wavenumber and frequency satisfy the dispersion relation

11 , d d
Q= —R—{Zq‘(dk“’o)z +q°
3

mlzRA)—4RsR4mlz:]: (39)

It is clear from equation (39) that the necessary and sufficient condition for stability
requires that

. 4w
rq (dkz°) +4q ’R,)-16R Rgn,J >0. (40)
The relation (40) can be written in the form
@ -q9,X9"~q,)>0, (4a1)
The transition curves separating stable region from unstable region corresponding to

Z

—[1/(—— D)(o,R, +R, +R,), (42)

q, =-[4R, 43)

In this case, the surface deflection is obtained as:

(O ¢)]
1= mgellke-toorontly |, 22K°E, E(~ = ’I(k)K (KL, (0K, (K)x
pe (Ko(w’

x(o coswt + 2im, sinwt) + e*Q,m’e Zifkz- (co0+czez)t]] (44)
The transition curves (42) and (43) are plotted in the (q* - k) plane for a sample
case. Figure (1) is for a system with p® =0.99823 gm/cm®, p® = 0.0013 gm/cm’,
¥ =80.08 , ¥®=1.00059 ,E,= 1 dynes/esu, E=0.2 dynes/esu and & = 01. The
region in the (q”- k) plane indicated by S represent situation where every point in the
region satisfies the inequalities (33) and (41). The unstable region are labeled by the
symbols u, and u, . In figure (1), the curves which are labeled by x, 0 and A represent
the external frequency o= 0.9749, 1.2 and 1.6 Hz respectively. It is shown that the
stable region is always enlarged as the external frequency is decreased. Thus, the
external frequency has a destabilizing effect. El - Dib [9] obtained the same result in the
plane geometry. El Dabe et al [20] studied the linear electrohydrodynamic stability of
two cylindrical interface under the influence of a tangential periodic electric field. They
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obtained two simultancous ordinary differential equations of the Mathicu type. Itis
shown that the constant tangential field has a stabilizing effect while the tangential
periodic field has a stabilizing influence except at resonance points. The thickness of the
Jet plays a role in the stability criterion and the external frequency is used to control the
position of the resonance regions. The special cases of large modulation and smail
modulation are also studied. It is shown that for large modulation the electric field has

destabilizing influence. :

Figure (2) represents the same system considered in figure (1), but o = 0.9749
Hz, the curves which are marked by the symbols x, 0 and A represent E;=1,1.2and
1.4 dynes- / esu. respectively . It is found that the increase of the constant electric field
increases the unstable region u,, while the unstable region ;. Therefore, the constant
electric field plays a dual role in the stability criteria. . In the plane geometry, E - Dib
[9] found that the constant electric field plays a dual role in the stability analysis.
Mohamed et al [17] studied the nonlinear electrohydrodynamic stability of a horizontal
interface separating two dielectric fluids are stressed by a tangential electric field. Based
on the method of multiple scales, two nonlinear Schrdinger equations are obtained.

The electrohydrodynamic cutoff wavenumber separating stable and unstable
disturbances is calculated. It can be seen that if a finite amplitude disturbance is stable,
then a small modulation to the wave is also stable. It is concluded that the tangential
field plays a dual role in the stability criterion. Also, it is noted that the field is stabilizing
or destabilizing according to whether the lower fluid has a larger or smaller dielectric
constant than the upper one.

Figure (3) represents the same system considered in figure (1), but o = 0.9749
Hz. and E,=1 dynes /esu, the curves which are indicated by the symbols x , 0 and A

represent E= 0.2 , 0.22 and 0.25 dynes/esu . respectively . It is concluded that the
increase in the amplitude of the electric field increases the size of the stable region.
Therefore, the amplitude of the periodic electric field has stabilizing effect. Malik and
Singh [21] studied the nonlinear waves on the surface of a magnetic fluid jet. It is
observed that the wavetrain of constant amplitude is unstable against modulations. As
the magnetic field is increased, the wavenumber at which the modulation instability sets
in siiifis into the region of long wave length.

5.2.2 The case of  near 2w@,:

In the resouant case when o » 2w, + 20, the solvability condition is due to a

parametric nonlinear Schrodinger equation:
A 1d%, oA [

: N - OA e 210E71T _
lR;‘é‘t—‘f‘z -dIz—a—éz—'FR‘AzA'f‘RsA+(1R5E+R7A)C =0,

(43)

where R, R, and R, are lengthy and not included here. They are available from the
author. The conditions of the stability of equation (45) are given by [19]:

€

R‘(R30+R6+R7)<0, _ (46)
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Figure (1) : Represents the plane (g° - k) for a system p® =0.99823 gm/cm’,
p® = 00013 gm/em’, ¥V=80.08, £ =1.00059 ,E,= 1 dynes/esu,

E=02 dynes/esu and & = 0.1. The curves which are labeled by %, 0 and

A represent the external frequency ® = 0.9749, 1.2 and 1.6 Hz
respectively.
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, (R d'wo '
R,+( ; +R,+2R, _dk_’°>0’ I'CY))
R
R,( 3U+RG+2RJ>0, (48)
€
The transition curves scparating stable region from unstable region corresponding to
R
( S’G+R6+R7j-—-0, (49)
R,=0, (50)
‘R,o d*e
R2+| —=—+R,+2R j =0
5 (\ € + 6+ 7 dkz 1 (51)
R, =0. _ (52)
Equation (49) and (51) can be written in the form -
R.E™ +RIE" + F_s(_“’_;_z“ﬁ =0 ' (53)
: d*w d’e R, (o -20,)d%®
(R + R, —2)E™ + 2R/, O+ 2 2 =0 4
] 6 dk‘ ) 7 dkz 2 dkz ’ (5 )

where E* =¢E, R, =R,E ,R,=R.E and R, =RE.

In this case, the surface deflection is given by

x[kz»-(coﬁo’ejt; 1 _Eszoﬁ(E(‘)—Nm)I K (0L (KK (k
[14 e T —— (K, ()L, (k)K, (k)]
ze‘Zi[kz—(coo+ce)l.] @

1 = mee
e mie b N 0 s
(55)

In the case of ® ~ 20, + 260 , the transition curves (53) and (54) are plotted in

the (E° - k) plane for a sample case. The region in the (E” - k) plane labeled by S
represent the situation where every point in the region satisfies the inequalities (46) -
(48). Figure (4) represents the same system considered in figure (1), but E, =1 dynes
/esu , the curves which are indicated by the symbols x, 0 andA represent cxternal
frequency = 0.4 , 0.5 and 0.8 Hz respectively . The dotted line (@ = 20,) divided
the plane (E™-k) into two regions. The right region satisfies the case of ® < 20,.
The left region for the values of ® > 2w, . It is noted that the external frequency has a
stabilizing effect. Also, it is found that the resonance point k” (o = 2w, ) is shifted to
the right hand side in the plane (E°—k). Mahmoud [10] studied the nonlinear
electrohydrodunamic Rayleigh - Taylor instability with mass and heat transfer. The
fluids are subjected to a periodic acceleration and a normal electric field. The necessary
and sufficient conditions for stability are obtained .It is shown that the thickness of the
fluid, the normal electric field and the coefficient of mass and heat transfer have
destabilizing effect. “Also, it can be seen that the external frequency plays a dual role in
the stability analysis. Elhefnawy et al [22] investigated weakly nonlinear stability of
interfacial waves propagating between two clectrified inviscid fluids stressed by a
vertical periodic forcing and a constant horizontal clectric field in the presence of mass
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and heat transfer. Tt is observed that the external frequency and the electric field play
dual role in the stability criterion.

Figure (5) represents the same system considered in figure (4), but » = 0.8 Hz,
the curves which are labeled by the symbols x, 0o and A represent E,=1, 1.5 and 2
dynes/esu .respectively . It is shown that the constant field has a destabilizing effect.
Also, it is noted that the variation of E, with fixed o results in a shift in the resonance
point to the left side. In the plane geometry, El - Dib [19] discussed the effect of a
periodic acceleration on nonlincar modulation of interfacial gravity - capillary waves
between two clectrified fluids under the influence of a horizontal electric field. It is
reported that the horizontal electric field plays a dual role in the resonance case.

6. Conclusion:

We have investigated the parametric excitation of nonlincar surface waves of
clectrified liquid jet subjected to a uniform axial periodic electric field. Two parametric
nonlinear Schrédinger equations are obtained in the resonance cases and a classical
nonlinear Schrodinger equation in the non - resonance case. In the resonance case of
the external frequency o near the disturbance frequency o, it is found the constant
electric field plays a dual role in the stability analysis and the external frequency has
destabilizing effect, while the amplitude of the periodic electric field has a stabilizing
effect. For » = 20, + 260, it i8 shown that the external frequency has a stabilizing
effect while the constant electric field has a destabilizing effect.
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Appendix
e IZ k 2 2 22 _ x@,2
5, = eaqpe 30, by, Koy 1., ., KEE 7Y
2" PR 2 Kik) 2 267 (k)

ECL (K (k) - EPLOK] (k) - B - ) 0K (k)]

2

— % :
A (kK] (k)

3 ,. 1
Ql=[—m§(l—p)+ —1—-2-kz

kE (s("—e‘z')
&7 (2k)e" (k)

[e"(K)EPTP L, (2K)K, (2k) + I, (2K)K, (2K)}HL, (K)K, (k) +

. P,
+L (0K, (k) + 26'(k)(€“’ —EDY? (2K)K, 2K, (K)K,, (k) - E®-8?)

x6 2 (K)I, (2K)K, (2k)+ £" KXE® - EPNEPL (IVK? (k) - EPT: (K2 (K)}

2
20,

kI‘(Zk)K,(zk){I"(Zk)x

+— euk)(‘“) N(Z))zlg(k)Kf,(k)—2é'(2k)e"(k)]]/[

2
K, (2k) - pK ,(2k)I,(2k)]} + 4k — 1+ ZkE K, (2k)I,(2k XE® - ~<2>)2J
e
where
£7(2k) = TVL,(2k)K, (2k) + BT, (2k)K, (2K) .
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