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Abstract

The nonlinear theory of Kelvin-Helmholtz instability is employed to
analyze the instability phenomena of ferromagnetic fluids. The effect of both
the magnetic field and the mass and heat transfer at the interface on the
instability is investigated. The method of multiple scale expansion is:
employed for the investigation. It is shown that, for the Rayleigh-Taylor
problem, the mass and heat transfer has no effect. In absence of the magnetic
field, the system cannot be stabilized by the finite amplitude effects for two
semi-infinite fluid layers up to the third-order.

1. Introduction

Ferromagnetic fluids are colloidal dispersions of submicro-sized ferrite
particles in a carrier or parent fluid such as kerosene. These fluids behave as a
homogeneous continuum and exhibit a variety of interesting phenomena.
Ferromaenetic fluids are not found in nature but are artificially svnthesized.
The two main features that distinguish ferrofluids from ordinary fluids are the

~ polarization force and the body couple. In absence of a magnetic field the
orientation of ferromagnetic particles is disordered by the thermal agitation,
and coating prevents the particles from sticking to each other. Numerous
applications for these fluids appear possible, including novel energy-
conversion schemes, levitation devices and rotation seals. An authoritative
introduction to this fascinating subject is provided in Rosensweig’s book [1].
This monograph along with that of Bashtovoy et al. [2] reviews several
applications of heat transfer through ferromagnetic fluids. ‘

The magnetization of ferromagnetic fluids is a function of the magnetic
field, the density, and the temperature of the fluid. Due to the variation of any
of these quantities the force induced gives rise to mass and heat transfer by
convection in ferrofluids. Convection can also be induced by surface tension,
provided that the latter is a variable [3]. In view of the fact that mass and heat
transfer is greatly enhanced due to convection, the magnetic convection
problems offer new possibilities for applications in colling with motors,
loudspeakers, transmission lines, and other equipments where a magnetic
field is already present.
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Various investigations of the instability of a ferromagnetic fluid (or
simply a magnetic fluid) by linear and weakly nonlinear analysis, in the
absence of mass and heat transfer, have been carried out by Singhetal
[4], Elhefnawy [5,6] and E1 -Dib [7]. They used the method of multiple scales
to derive a pair of partial differential equations that describe the evolution of
finite-amplitude wave-packets on the interface separating two magnetic fluids.
These equations were combined to yield two alternate nonlinear Schrddinger
equations and a nonlinear Klein-Gordon equation. The effect of mass and
heat transfer on the motion of fluids has been treated extensively by many
authors [ 8-15]- Hsieh [8] presented a formulation to deal with interfacial
stability problem taking into account mass and heat transfer and applied it to
discuss the Rayleigh-Taylor and Kelvin-Helmholtz instability problems. Hsf¢h
[9] used the method of multiple scale expansion to study the nonlinear
Rayleigh-Taylor stability of a liquid layer over a finite vapour layer. It is
observed that the nonlinear effects can indeed increase the range of stability
of the system when there is strong heat and mass transfer, while this is not the
case for linear Rayleigh-Taylor instability [81.

The aim of this work is to study the nonlinear Kelvin-Helmholtz
instability in magnetic fluids in the presence of both a tangential magnetic
field and mass and heat transfer across the interface. The objective of this
presentation is to investigate the nonlinear dynamic stability when the applied
magnetic field is greater than the critical value of the field. The nonlinear
“stability analysis along with the linear instability results thus become
necessary in order to finda band of physical parameters where the possible
subcritical instabilities arise.

The basic equations governing the formulation of the two-dimensional
problem are given in section 2, along the procedure for obtaining linear and
successive nonlinear partial differential equations of various orders by means
of multiple scales. The linear theory is reviewed in section 3, where the
critical magnetic field is obtained. In section 4 we obtain the equation.
governing the evolution of the amplitude from the second-and third order
theories, which leads toa Landau equation with complex coefficients. From
the latter equation, the various stability criteria are obtained in section 5.
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2. The governing equations

Consider two incompressible, inviscid magnetic fluid layers separated
by an interface z=n(x,). We shall use subscripts 1 and 2 to denote variables
in these two fluids, which occupy the regions -k <z<n and m<z<h,
respectively (b and h, are the thicknesses of the two fluid layers). Let the
temperatures at z=- h;, z=0,and z=hy be Ty, T and 7, respectiveley. The
two fluids are streaming with velocities u, and u, along the positive x
direction. The magnetic field H, acts along the direction of the flow.
Acceleration due to gravity g acts in the negative z direction. The fluid
densities are p,and p, while p, and p, are the magnetic permeabilities of the
two fluids. The motion is considered irrotational having velocity potential ¢.

We also assume that the quasi- static approximation is valid and the magnetic
feld is a curl-free vector having magnetic potential .

The basic equations governing ¢ and 1, on each side of the interface,
are[ 16,17] '

Vi, = Vi, =0 for —h <z<n(x,0) 2.1)
Vip, =V, =0 for n(xt)<z<h, (2.2)
] d
where V= (3‘;,0,32—) +l'\e,
The solutions forq)]. and ¥, (=1, 2)must satisfyﬁfollowing conditions on the
rigid boundaries:
o oy -
bl onzs(=1) B o f=l 2 2.3)
0z ox
Also, at the free interface z=m (x.7) the interfacial conditions are:
M Wy _ 2.4
ax+axaz @y ( )
o 2 g, T2 @.5)
"\ oz 0 3x ox oz

op, _dn _ n M de 2.6
pl( 0z at “ 9x ox 9x @n ( )
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where the notation {(2)} on the right-hand sides of these equations is used to
denote the same expression as that on the left, except for changing the
subscript 1 to 2. The coefficient of surface tension is denoted by o. It is to be

noted that accordmg to the quasi-equilibrium approximation, the coefﬁments
a, a,, and o, are given by [9]

<2 Ue SRR Wb NN 4.
TR TR SRR el
where G is the equilibrium heat flux and L is the latent heat of transformation

from the fluid of density P: to the fluid of density p,. The coefficients
a, a,, and a, are all of order O(1).

We briefly explain the meaning of equations (2.4) - (2.8). Equations
(2.4) and (2.5) express the continuity of the tangential component of the
magnetic field and the normal component of the magnetic induction vector
across the interface, respectively [1]. Equations (2.6), (2.7) and (2.8) express
the conservation of mass, momentum and energy, respectively, by taking into
account mass transfer across the interface [9]. In deriving condition (2.7), we
have used the expression for the Maxwell stress tensor which includes the
effects of nonlinear relation between magnetization and the magnetic
induction.
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Equations (2.1), (2.2) and conditions (2.3) - (2.8) consitute the
governing equations of the problem. These equations can be solved by using
the multiple scale expansion method {Nayfeh [15]} to investigate the
nonlinear effect on the stability of the system.

3. The expansion near the critical magnetic field

Introducing € as a small paprameter, we assume the following expansion of
the variables:

ﬂ(x»‘)'26'7]..(""0:‘1,‘2)*‘0(54), (31) .
§ (2= FER (5116 +OE), (32)
and
¥ (x,2,0) = Zexp (X, 21,1,1,) +O(EY), {3.3)
where

= , (n=0,1,2) _ (3.4)
and
n, = A(t,,t,) expli(ke - wiy)] +c.c (3.5)

In the latter equation (3.5), we have used the notation c.c. to denote the
complex conjugate of the preceding terms, w to the frequency and  to the
wave number. '

To evaluate boundary-conditions (2.3)-(2.8), we use the Maclaurin
series expansions at z=0 for the quantities involved. Then, on substituting
equations (3.1)-(3.4) into equations (2.1)-(2.8) and equating the coefficients
of like powers in € we obtain the linear as well as successive higher - order
perturbation equations. The hierarchy of the equations for any order can be
solved with the knowledge of the solutions of the previous orders. The
procedure is straightforward but lengthy and will not be included here. The
details are available from the author and is outlined by Refs. [9,13].

For n=1 (the first-order problem), the frequency w and the wave
number & satisfy the dispersion relation '
a,w® +(a, +ib)w +a, +ib, = 0 (3.6)
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where

a, = p, cothkh, +p, coth kh,

a, = -2k(p,u, coth kh, +p,u, cothkh,)

b, = a(coth ki, + cothkh,)

a, = gk(p, = p,) + k* (pyu’ coth ki, +p,u; coth kh, ) -

-k*HZ2(n, = 1,)* (u, cothkh, +p, cothkh,)™ - ok®

b, = —ak(u, coth kh, +u; coth kh,)

The study of the properties of the roots of equation (3.6) can determine thc
stability and the instability conditions of the given problem.

From the Routh-Hurwitz criterion, we can write the condition that.a
root  of (3.6) will have a positive imaginary part as
a,b? —a,bb, +a,b? >0 3.7
When this condition is satisfied we have instability. When H, = H., the
critical magnetic field at which instability first sets in, we have '
ab; —a,bb, +a,b; =0 (3.8)
Putting the values of a,a,,4,,b, and b, from (3.6) into (3.8) we can easily
show that
Hi=H+ (PL=P,)" (1 —u,)" (w, cothkh, +p, cothkh,) ’ (3.9)

(M, =1,)* (p, coth kh, + p, coth kh,) (tanh kh, + tanh kh,)?

where (H, is the critical magnetic field in absence of mass and heat transfer)

H; '[g(Pz -p,) -0k + kp,p, (1, -u,)*(p, tanh kh, + p, tanhkhl)"]x

x(u, coth Ky + ., coth kh, )/ [k(p, = 1, )’]
It is clear that the equation (3.9) is independent of a (a  isthe
coefficient of mass and heat transfer). Therefore, the critical magnetic field in
the presence of mass and heat transfer A, is independent of mass and heat

(3.10)

transfer coefficient. But it differs from that of the critical field without mass
and heat transfer H, by the additional last term in (3.9).

On the other hand, we notice that the last term in (3.9) is always
positive. It means that the stable regions will be decreased as in figures (1).
Therefore , however o is small or large , the mass and heat transfer has a
linearly destabilizing influence on the Kelvin- Helmholtz problem.

Whe:n u, =u, (the Rayleigh-Taylor problem) or p, = p, we find that the
last term in (3.9) disappears. It means that H, = H, and so that the mass and

heat transfer has no effect.
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4. The evolution equation and stability analysis
It is obvious from (3.6)-(3.10) that the system is stable for all H, > H;. When

the nonlinear effects are included, it is expected that the stability
characteristics around the critical magnetic field H, will be changed.

However, we shall assume that the critical magnetic field, because of the
nonlinear effects, will shift to

Hy=H.+€A , 4.1)

with A =0(1)
Thus the shift of the critical magnetic field is of order O(€).

The solutions of the second-order problem have nonhomogeneous
expressions in terms of the first-order solutions. In order to avoid the
inconsistency that m,/m, may become unbounded as x goes to infinity, we

obtain

A '
h 0 4.2)

which implies that the amplitude A is independent of the faster variable ¢,

Proceeding to the third-order problem, we obtain after some straight
forward reductions the evolution equation for the amplitude.

a
at,

_a_ Zi(px = pz)(“x = uz)

[k (coth kh, + cothkh,) + Cantihh, + tanhkh,)]
i (4.3)

2AKH (1 - 1t2)

+
(15 coth ki + p, coth k)

3
A +(v--2-0k‘)|A|2A -0



260 Abdel Raouf F. Elhefnawy

where
v = Nk{2k?[p, (4, -, )* (coth® kh, + coth kh, coth 2kh, - 1)
-p, (uo -u,)*(coth? kh, + coth kh2 coth 2kh, -1)] +
a [—(coth kh, coth2kh, -1) - —(coth kh, coth 2kh, -1)]
+1ak[2(u, —u,) = (uy —u,)coth kh1 (cothkh, +2a., / k)
+(uy — 4, ) coth kh, (coth kh, -2, / k)] +8,H K"} +
+2Kk*[p, cothkh, (u, —u,)* (1 - cosech *kh) +p, coth kh,(u, - u, )?

(1-cosech kh))]-o {2k[ cothk}q(cothkh, coth2kh, —1) +
-pl—coth kh, (coth kh, coth 2Kk, ~ 1)]- a,[‘-)-(com kh, coth 2kh, ~1)

-l(coth kh, coth 2kh, - 1)]} - 28,H2k* (4.4)
P2
with
N ={ k*[p,(u, —u,)*(coth? khy + cothkh, coth2kh, -1)-
—p, (g - u,)* (coth? kh, + cothkh, coth2kh, - 1)]
—2-0.2[—(1 +coth® kh ) - ——(1 +coth? kh,)]
2iak[(u, —u, )ycoth2kh, (2cothkh - tanh2kh, - a.,/ 2k)
~(uy — uy) coth 2k, (2 cothkh, — tanh2kh, + o, / 2k)] + 8HIK* 12 }/
{g(p, —p o)+ 40k* +2kH>8,(2k) - 2k[p, coth2kh, (4, - W) +p, coth2kh, (i - 4,)")

—ici[coth2kh, (i, -, ) + coth2kh, (4, = 4,)] } (4.5)

B, = 4(p, — ;) + 280 (K)[280(2k) + 8o (k) / K1/ (s = 1h1) +
+05 (k)(1, coth® ki, -, coth? kh) / (1, - w) + (4.6)
+4p n,8, (k) (2k)(coth ki + coth kh, )(coth 2kh, + coth 2kh, ) / (1, = )
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8, = 28, (k) - 28] (k)8 (2k) /(1 ~ ,)* +8;(k)B, (2k)
(1, coth kh, coth2 kh,— p coth kh, coth2kh) /(p, - 1,)° +

4.7)
W 1,8,(2k)02 (k)( coth kh,+ coth2 kh)[ coth2 kh,+ coth2kh) -
2 coth2 kh, coth2kky( coth kh+ cothki)]/(, —1,)*
8o(k) = (1y —,)* / (u, cOthhhyy, cothkh) (4.8)
u, = (u, cothkh+u, cothkh,)/( cothkh+ cothkh,) 4.9)
Equation (4.3) can be rewritten in the form [16]
‘-;t‘i»f(P, +iB)A+(Q, +iQ,)A[A=0 (4.10)

2

where B, B, Q,,and Q; can be easily obtained from (4.3)-(4.9)

Equation (4.10) is the well-known Landau equation[ 18,19] . In the special case
u, =u, =0, equation (4.10) becomes

%+(al+aZIAlz)A=0 4.11)
where '
a, =2A KH_ (1, - w,)* / [o(coth khy + coth kh, )(1, coth ki, g coth kh,))

a, = k(v -1.50k")/[o(coth kh, +coth kh,)},
with

v = Nk{ o[ (coth kk, coth 2/, ~1) - pi(comkh2 coth 2kch, - 1)]
Py 2
+0,Hzk* }- u’[2k[-1— coth ki, (coth kh, coth 2kh, —1) +
Py
1
+ —l—coth kh, (coth kh, coth 2kh, ~1)] - aZ{p— (coth kh, coth 2kh, —1)
P2 1

-Bl—(coth kh, coth 2kh, —1)] }-20,HZK’,
2
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1 1
N-E{ ot’[-p—(l-i-cothzkh‘)—;l—(li-coth’k}t,)]u')lz‘-lék2 Y/
1 2

[8(p, - y) + 4OK* + 2kH25,(2k)] -

There is no loss of generality in treating A as real in (4.11) since the phase
associated with 4 remains constant. Thus, denoting A (0) by A ,we obtain
A (tz) = axA: exp(_zalt)[al P azA: - azAg exp(—2alt)]" i (412)

A is thus asymptotically bounded except when the denominator in the
last equation vanishes The stability situation can be summarized as follows:
(I a,>0 :stable

(i) a,>0: A’ =0, as 1§, >
(ii) a,<0:A* > -a,/a, , as L=
n a,<0:
(i) a,< 0: unstable
(ii)a, > 0,and A} > —(a, / a,):unstable
(iii)a, > 0,and A},<-(a, | a,):unstable andA* =0 as t, —> ®.
When a, =0, the system is stable if g, > 0 and vice versa. This is the result

which can be obtained from linear stability analysis. With nonlinear effects.
the controlling factor shifts from 4, 70 a, and a sufficient condition for stability
is a,>0 . When a, <0 even if a, >0, the system can be unstable if the initial

amplitude is large enough. The stability condition a, >0 is equivalent to
v>%ok‘ (4.13)
When the system is linearly unstable, i.e. ,when A <0,the asymptotic
value of A for larger times will be given by ‘

lAr = 2AkH(py -1y V- ?’z—crk‘)(p.l coth kh, + p, coth kh,)) 4.14)

Therefore, the range of spectra of the stable wave length is enlarged by the
finite amplitude effect. From practical considerations, we would expect that
as the amplitude exceeds half the wave length, or the thickness of the fluid
layer, then there is a tendency for bubbless to form and detach from the
interface, or to cause the rupture of the fluid layers. Thus, more stringent
practical stability criteria (4.13) are required. These means that the quantity
v plays a critical role in the nonlinear stability of the problem. Now, we shall
consider some limiting cases. For problems relating to boiling heat transfer,
we shall take p<<p, . Therefore
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v = 0o’ x (coth kh; coth 2kh; - 1) (N - 2 coth kh; - o/ K)/ pi +

HE K (N & -28;) , (4.15)
where

N=[d (- coth’khy)/p+ HZK & ]/ [60K +

2kH(26,(2k) - 8, (k) ] (4.16)

Some simplification can be achicved , when (kh,) and (kh;) become
extremely large or small . Let us consider two special cases:
(i) kh>>1 and khp>>1. This is the case of two semi-infinite fluid layers
we have

veH [N (- ) -2 )] (pa- )’ Ap s )’ (417)

where
N = [20 /pi+ HE' K pu- w) N - )’ ] [60K -
2kHE (2= )" A2+ )] (4.18)

(ii) khj<< 1 and kh>>1 (ie. coth kh; ~ 1/kh; and coth khy ~ 1). This is

the case of a heap liquid layer on top of athin vapor layers. It is a fairly
realistic approximation of the real situation .we obtain

v=olk (12Kh, -1)(N-2/kh+ as/k)V/pr |

HAK (NS -268) 4.19)
where

N=[d(1+1/KH)/ p+ H K &/ [60K +
2KHC( 25, (2K) - & (k) 1. (4.20)
5i = 6i at khy<<land khy >l
Thus we show that thinner the vapor layer, easier it isto make the
system stable, while with the same heat flux it is almost impossible to

stabilize the system for large values of kh;. These results appear to be in
conformity with the physical fact that the effect of heat and mass transfer will
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clearly be more pronounced for layers of small thickness; this effect tends to
become negligible for layers of very large thickness.

5. Conclusions

We have investigated the evolution  of the amplitude of the
progressive waves in superposed magnetic streaming fluids with mass and
heat transfer across the interface is governed by two partial differential
equations , based on the method of multiple scales. These equations were
combined to yield the Landau equation. It is used to investigate the necessary
conditions for stability and instability . we have shown that the mass and heat
transfer coefficient plays an important role in the nonlinear stability of the
system. For two semi infinite fluid layers, we have also shown that v depends
only on the magnetic field . Thus , in the absence of the magnetic field , the
system cannot be stabilized by the finite amplitude effects up to this order .
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