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Abstract

The linear and nonlinear instabilities of force-free magnetic fields of per-
fectly conducting fluid cylinder have been analyzed. Indeed, the instability of
force-free magnetized flows poses a challenge tc our physical understanding
and mathematical skills. Equilibrium state is studied by taking Lundcquist
field (1951) and it is found that the fluid kinetic pressure is non-uniform.
Normal mode analysis is utilized for investigating the linear perturbation
technique while in nonlinear ones an iteration procedure (see Radwan (1989))
is used. The stability criterion is discussed analytically and numerically and
the unstable domains are identified. Surprising results are obtained due to
Lundquist Bessel model effect. The second order perturbation equations are
derived and solved. Upon applying appropriate conditions, the coefficients
control nonlinear theory are identified in general and in the case in which the
force-free tenuous field is unperturbed in the linear analysis. Second order
analysis does not alter in a direct way the unstable domains. However, it
gives corrections and domain of validity for the linear analysis, since no linear
theory can predict its domain of validity.
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1. Introduction

The instability of a full liquid cylindrical jet endowed with surface tension
has been a subject of research for more than a century. This is not only
academic viewpoint but also for its wide applications in several domains
of science. Plateau [1] was the first to obtain the instability critical wave-
length experimentally and theoretically with primary methods. The decisive
breakthrough came with Rayleigh [2] who developed an elegant mathematical
technique for the break-up of the cylindrical jet; and he laid the theoretical
foundation and also the concept of maximum mode of instability for such
and similar problems. Several extensions, including dissipation and rotation,
and all the early reported works have been summarized by Chandrasekhar
[3]. A third of century has passed since the investigations of nonlinearities of
capillary instability of a fluid jet by Yuen [4] , Wang [5] , Nayfeh [6] , and,
finally, a complete analysis by Katukani et al [7]. Chandrasekhar (3] has
investigated the influence of a constant magnetic field on the fluid capillary
instability (see [3] p.542) by using the method of representing the physical
variables in terms of poloidal and toroidal quantities. The stability of a full
liquid jet with varying magnetic fields and other different cylindrical models
has been investigated by Radwan 8, 9, 10, 11, 12].

Nowadays, in particular in the last decade, the scientific province and
attention has been turned to more complicated problems than the naive one
of Rayleigh [2] (cf. Uberoi et al [13] , Drazin et al [14] , Cheng [15] , Kendall
[16] , Lin & Lain [17] and pioneering works of Radwan [11] and [12] ). Al
this work has slowly built up a subject of understanding the instability of
pure hydrodynamic or/and MHD (with uniform magnetic field) models, but
much remains to be discovered.

To the best of our knowledge, the analytical and numerical stability stud-
jes of a liquid cylinder under combined effect of surface tension and force-free
magnetic field (Lundquist model fields [18] ) in the nonlincar version, have
not been attempted so far, and this will be a scope of our study here.

2. Formulation of the problem

Force-free magnetic fields play an essential role in magnetohydrodynamic
studies. They are characterized by the vanishing of the electromagnetic force.
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In view of their practical applications in the astrophysical domain as well as
more recently in plasma physics, they are worthwhile to be investigated and
to find out their effects on the capillary stability of a full fluid cylinder.
In the astrophysical domains: force-free magnetic fields are of interest for
understanding the dynamical behavior of the spiral arms of galaxies and
structure of the sun's corona cf. Boyd and Sanderson [19]. For some practical
applications in Plasma physics: the force-free field is an important tool for
several reasons. (1) Lorce-free fields arc the most general equilibriumn ficlds
in the pressureless regions, see equations (12)- -(14). (i) Force-free fields
in which the current density is parallel to field, sce equation (10) , have
been the subject of considerable attention in a large scale of science. (1)
Force-free fields still appear to be reasonably good approximation for real
magnetic fields in Laboratory experiments (Cambridge, Trieste, Garching,
Culham,...etc). Furthermore, they can be studied in a rather detailed way
from the mathematical point of view. Lundquist {18] was the first to study
the equilibrium state of the force-free fields. The force-free magnetic field
(14) is that of Lundquist [18].

The main purpose of the present work is to investigate the linear and
nonlinear MHD stability of a fluid cylinder under combined influence of the
capillary, electromagnetic force-free field and pressure gradient forces. The
fluid cylinder is pervaded by homogeneous magnetic field (15) while the pres-
sureless tenuous region surrounding the field cylinder is pervaded by the
Lundquist force-free field (14). The capillary force acts along the fluid cylin-
der boundary surface. The fluid cylinder of radius R, in the equilibrium state
is considered to be incompressible, non-viscous and perfectly conducting.

3. Basic equations

The basic MHD equations express the coupling between the electromag-
netism Maxwell's equations and pure hydrodynamic ones (equations of sur-
face tension and motion with Lorentz force) together with Ohmrs law. For
the present problem in which the fluid cylinder medium is free from resultant
free charges and characterized by slowly varying field, these equations are

p(% + @ V))u=-Vp+u(JAH) (1)
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% +o(Vau) =0 (2)
po=T(VA)=T (% 4 -;—) 3)
VAE+ u%i =0 4)

V.H =10 5)

VE=0 (6)
VAH=pl 7)
J=S(E+p(unH) ®)

Here p is the fluid kinetic pressure, u the velocity vector, T" the surface tension
coefficient, p, the pressure surface due to the capillary force, R, and R; the
principle radii of cylindrical curvature, A, the unit outward normal vector to
the boundary surface of the cylinder f(r,@,z;t) = 0 given by

fi, = Vf(r,0,z)/|Vf(r0,z1)] )

p the magnetic permeability, J the electric current density, H the magnetic
field intensity, E the electric field intensity and S the electric conduction.

In the tenuous medium region surrounding the fluid cylinder, the force-
free magnetic field exists, this is characterized by the vanishing of the elec-
tromagnetic (Lorentz) force

p(JAH)=0 (10)

Equation (10) may be rewritten as

(VAH)AH =0 (11)

This means that in those regions (where a force-free field exists), neither the
magnetic field nor the current J vanishes but the currents must flow parallel
to the magnetic field. Equation (11) may then be replaced by the relation

(VAH!)=nH' (12)
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where the superscript f over H signifies the force-free magnetic field and 7 is
a force-free parameter having dimension of reciprocal of length, see equation
(14), and satisfies some restrictions, see equation (17). Equation (12) with
the conservation of flux

V.H =0 (13)

constitute the basic equations of the force-free field where the pressureless
tenuous regions exist.

4. Equilibrium state

In investigating the problem at hand, we use cylindrical polar coordinates
(r,0, 2) system with z-axis coinciding with the axis of the cylinder. In the
present case of equilibrium state the different fluid variables are independent
of 0,2 and t. Equations (12) and (13) are solved for the tenuous medium
surrounding the fluid cylinder. The solution with cylindrical and longitudinal
symmetries 8/89 = 0 and 8/0z = 0, is given by

Hi = (0,Y1(nr), Yo(nr)) Ho (14)

where the subscript o denotes equilibrium quantities. Yi(nr) and Yo(nr) are
the ordinary second-kind Bessel functions of orders one and zero, respectively,
and H, is the intensity of the magnetic field vector

E—O = (07 0) HO) (15)
pervaded in the interior of the cylindrical liquid jet. The magnetic field
(14) represents the so-called Bessel function model, see Lundquist {18]. It
is worthwhile to mention here that the magnetic field which is considered
to be penetrated in an ordinary vacuum surrounding the fluid cylinder (see
Chandrasekhar [3] and Radwan [12]), can be obtained from (14) by inserting
n = 0 into equation (12). Moreover, with appropriate choices the solution
(14) may be replaced by different vacuum magnetic fields which have been
atilized by Radwan [19]- -[12]. Upon applying the pressure balance condition
across the fluid-force regions interface at r = R , the pressure distribution
po of the fluid in the unperturbed state is identified. It is given by

T

m= o+ () (17(9) + Y3(6) - 1) (16
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where (= nRo) is a dimensionless force-free wave number. The first term
(%5) on the right side of (16) represents the contribution of the capillary force.

The term (— ugia) represents the contribution of the acting electromagnetic
force in the interior of the fluid, while the terms including Y7 and Y7 are
due to the electromagnetic force-free magnetic field. Physically speaking, po
must be positive, so in postulating that the body forces are predominant and
overcoming the capillary force, 3 must satisfy the restrictions

(Y2(B) +Ys(8)) 2 1 (17)

where the equality holds for a limiting case of zero fluid pressure.

5. Perturbation analysis

For small departures from the equilibrium state, every fluid variable Q(r, 6, 2; t)
describing the motion of the fluid can be expressed by a series (cf.Radwan
24])

Q(r,6,zt) =Y "Qu(r,8, ) (18)
n=0

where Q stands for u, p, H, n,, p, and H f and the perturbed radial distance of
the cylinder. Here ¢ is the amplitude of the linear terms at time ¢, expressed
as (cf. Chandrasekhar [3]): :

= goexp(ot) (19)
where £¢ = £(0) is the initial amplitude and o is the temporal amplifica-
tion. The deformed (fluid-force free regions) interface, based on the linear
perturbation technique, could be described by

r = Ro+ ey (20)
with
R, = Rgcos(kz) cos(mf) (21)

is the elevation of the surface wave measured from the unperturbed position
where k and m are the longitudinal and azimuthal wave numbers..
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Substitution of the series expansion (18) into the basic equations (1)--(9)
yields, by identification of the powers of &, hierarchy of coupled systems of
lower order. The system of zero order corresponds to equilibrium already
studied, the first order is pertaining to the linearized system and the second
and higher to nonlinear systems. By taking into account that the fluid is
perfectly conducting, inviscid and incompressible, the relevant linear pertur-
bation equations of motion of the fluid are given by

gy

1 = %(_110.\7)111 - V&, (22)
P K :

=2+ (2p)(ﬂ-ﬂ)1 (23)
Vau, =0 (24)

OH, ,
-—6—t—=V/\(yl/\ﬂo)+V/\(yo/\_H_l) (25)
V.H,=0 (26)

T PR PR

Pis = —_R_g <3‘l‘.1 + '8—02—1"*' R?)Ej) (27

where equation (25) is originally obtained upon combining equations (4)- -(8),
p€,is the total MHD pressure which is the sum of the fluid kinetic pressure
and magnetic pressure acting in the interior of the fluid cylinder.

From the point view of the space-time dependence (19) and (21) and based
on the linear perturbation technique (see Radwan's [12] recent work say),
the perturbation equations (22)- -(27) are solved. As a result, apart from
singular solutions, their finite solutions as r tends to zero for axisymmetric
perturbation (% = 0) are given by

oy = C‘—;f—?z—?ﬁV(Io(kr) coskz) (28)
H, = G’;%vuo(kr) cos(-g — kz)) (29)
€, = Alg(kr) coskz (30)

T 1 - k2R2) coskz (31)

DP1s = RO
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Here A is an unspecified constant of integration, Io(kr) is the modified Bessel
function of the first kind of order zero and

;aH k? 2

={ )t (32)
is the Alfven wave frequency defined in terms of Hp.

Using the series expansions (18) for the force-frec magnetic field equations
(12) and (13), the relevant perturbation equations for the tenuous region
surrounding the fluid cylinder are

V AH{ = qH] (33)

v.H{ =0 (34)

These equations, based on the linear perturbation technique, are solved in
a general case then on a physical basis the singular solutions as r tends to

infinity are excluded. ,
The components of H/ are given by

H = H(r)sink:z (35)
H, = Hyp(r) coskz (36)
H{, = Hy,(r) coskz (37)

Here, the amplitudes Hy,(r), Hy(r) and H;,(r) are

kKo (€)
H]r(r \/%;7—2 (38)
Hylr)= Ko(f) (39)
Hy,(r) = BKo(E) (40)
in terms of

€ = (K —n)r (41)

where B is an arbitrary constant, Ko(§) is the modified Bessel function of
the second kind of order zero and the prime over it denotes derivative with
respect to the argument.
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The constants A and B can be determined by applying the compatibility
condition of the normal component of the velocity and the continuity con-
dition of the normal component of the magnetic field across the interface of
the fluid-force free regions at 7 = Rp. Doing this, we find

_ (02 + 92 )
A=-F T I(',(:rg4 42)
B=-Hgy (T;,‘Z.)—((%) (43)

Here y(= (z® — #%)"/2) is given by (41) at r = Ro and

r=kRo (44)

where x and y are the dimensionless ordinary and force-free longitudinal wave
numbers, respectively. ’

Moreover, we have to apply the boundary condition that the normal com-
ponent of the total stress tensor due to electromagnetic forces in the interior
and exterior of the fluid cylinder must be discontinuous due to the capillary
force across the fluid boundary surface at r = Ro. Consequently, we end up
with the eigenvalue relation '

o2 = 6*(T) + o*(Ho) (45)
with

T z Ly(2)
PRy Io(z)

o) - 48 () [0 oo oo - v700)| - <)
)

o*(T) = (1-2% (46)

6. Discussions

6.1. General comments

As a general statement the dispersion relation (45) with (46) and (47) tells us
whether the model is stable or not and eventually determines the critical value
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of the wave number that separates the stable states from those of instability.
The marginal stability states can be obtained such that o = 0. The dispersion
relation (45) includes the most of informations about stability. It contains
the entity of ("—,f,f—%)l/2 as well as (-Eg%)l/ ? 49 a unit of time, a dimensionless
wave number z, dimensionless force-free longitudinal wave number y and the
parameter 7 which is the current-field ratio normalized with respect to Ro.
The dispersion relation (45) contains also like the other problems of other
cylindrical configurations subject to different forces, see Radwan [11] and
(12]: the modified Bessel functions of the first and second kinds of order zero
and their derivatives but here with argument z or Yy instead of z only in
those problems. Moreover (45) contains here the ordinary Bessel functions
Yo(B) and Y1(8) of first kind of orders zero and unity. Careful and extensive
investigations for the stability criterion (45) are needed to identify stability
and instability states

6.2. Magnetodynamic stability discussions

The results of discussions of the present flow are new. Such results come out
in investigating the dispersion relation (45) at T = 0 or more precisely in
investigating the relation (47).

Here it is found more plausible that we analyze the dispersion relation
(47) for various cases of interest. We make discussions for three different
categories, where in each one the fluid cylinder is pervaded by homogeneous
magnetic field.

Category (i)

We consider here that an axial force-free magnetic field only, pervades in
the tenuous region surrounding the fuid cylinder, i.e, we put Y, = 0in (47).

The influence of the magnetic field in the interior of the fluid cylinder
is represented by the term (-z?). It has always a stabilizing effect. The
influence of the axial force-free magnetic field in this case is represented by
the term 2y [1o(z) Ko)Y2(8)/ (o) Ko0))]

We can show, by the aid of the recurrence relations of the modified Bessel
functions (see Abramowitz and Stegun [20]), that it has always a stabilizing
effect.

Therefore, we conclude that a fluid cylinder pervaded by a homogeneous
magnetic field and surrounded by an axial force-free magnetic field, is stable
for all non-zero real values of z, y and .
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Category (ii)

We consider here that the fluid cylinder surrounded by transverse force-
free magnetic field , i.e, we put Yy = 0 in (47). Following the same steps as
have been done for category (i), one can show that the model in such a case
with Yp = 0 is also stable for all non-zero real values of z, y and .

Category (iii)

Here, we consider the general case in which the fluid cylinder is pervaded
by the magnetic field (0,0, Hp) and surrounded by the force-free magnetic
field (0, Y1 (nr), Yo(nr)) Ho. The dispersion relation of the present case is given
by the relation (47) including all the terms concerning axial and transverse
force-free fields.

The influence of the homogeneous magnetic field in the interior of the
fluid cylinder is still represented by the term (—2?) and it has a stabilizing
effect. This effect is valuable for all short and long wavelengths. The influ-
ence of the azimuthal force-free field is represented by the terms in Y;. It
has also a stabilizing influence via the term Y{(3), while the effect of the
mixed term containing Yo(3) , Y1(8) is found to be stabilizing in regions not
neighboring and idem for the destabilizing regions. So the principle of ex-
change of instability is valid in contrary to the problems in which uniform or
even nonuniform magnetic fields are pervading into the fluid where ordinary
stable and unstable domains only are found. In general, we can see that the
Lundquist force-free magnetic field (see equation (14)) has a stabilizing effect
if the following restrictions are satisfied

2 yKo(y)
(VP(8)+ Ty Yo 1)) 2 30 (1(B)Y1(8)) (48)

otherwise it is destabilizing. Consequently a fluid cylinder under the com-
bined effect of the pressure gradient force, electromagnetic forces in the inte-
rior and exterior of the fluid cylinder, is stable for each non-zero real values
of z and y if, and only if

(o4 LADEC) ya(s)) > 30 0%8) @0

8>0 (50)

are satisfied and vice versa.
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6.3. Hydrodynamic stability

The hydrodynamic oscillation and instability of the present fluid cylinder, as
only capillary force is acting on it, could be identified through the investiga-
tion of the dispersion relation (45) with Ho = 0. The discussions reveal that
the fluid jet is unstable in the domain z < 1 while it is stable in all other
neighboring domains z > 1, where z = 1 represents the marginal stability
¢ = 0. This means that the model is stable as long as the perturbed wave-
length A(= 2/k) is shorter than the circumference 27 Ry of the perturbed
cylinder and vice versa.

6.4. Hydrodynamic discussions

In such a general case the fluid cylinder model is under the combined effect of
the capillary force, electromagnetic force-free field outside the fluid cylinder
and the ordinary Lorentz body force in the interior of the cylinder, in addition
to the fluid pressure gradient force.

The instability could be identified upon investigating equation (45) in
its general form. The instability results of this case could be obtained by
combining the results of the particular (6.2 ) and (6.3). In order to clarify
and confirm the analytical results and to examine the effect of the force-free
magnetic field on the capillary instability, the non-dimensional eigenvalue
relation.

otz _ o
TR = Tl (7 2) 2 (51)
z Ko(y)Y
(a2 {2 + 252 [v2(5) + 3o (B3 (8) + LHEA | }
has been computed on a cbmput.er, where H, is defined by
T
H?= — 52
s =k, (52)

The calculation have been already performed for different values of (Ho/Hs)
and B(= nRy). The numerical data are collected and presented graphically.
There are many features and properties in these numerical illustrations.

For (Ho/H,) = 0, it is found for all values of 3 that the model is unstable
only in the domain 0 < z < 1 and stable otherwise.
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Py =po+ 5(H.H), (54)

Va, =0 (55)

20H, =V A(uy AHg) + VA (uy AH ) +V A(ugAH,) (56)
V.H,=0 (57)

5 N _—— 0”1,- Uyp 68?1 : 3%1 /e on

20y = uyr + Iy 5 T 90 Uiz (58)

where the influence of the capillary force is neglected here in the present
study of second order for simplicity.

Exterior of the fluid cylinder

V AHj = mH] (59)
V.H{=0 (60)

The first order velocity vector and the magnetic field are gradients of
scalar functions, see equations (28) and (29), moreover the driving force is a
gradient. By the use of the Lagrangian extension theory, see Callebaut [21]
and Radwarn [24], [25], we are able to show that the velocity vector us is
given by

uy = V¥, (61)
such that
o Rla
= ——— Iy(2k 2k 62
Vs = s a(2kr)cos(252) (62)

where @ is a dimensionless second order coefficient. Substitution of (21),
(28), (30), (42), (61) and (62) into the equation of motion of the deformed
fluid-force free regions interface (58), the second order elevation of the surface
wave R, is given by

Ry = 2 Ro( Ay cos(2kz) — i) (63)
where

1 ik CIIIQ(:ZJ)
fo s e
4 2 Iy(z)

A=a (64)
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For (Ho/Hs) = 0.1 , it is found that the model is MHD stable for

B-values : 0.01,0.03,0.05 and 0.07. In such case, for = 0.09, it is found
that the model is MHD unstable in the domain 0 < z < 0.7 and stable in
the other domain 0.7 < £ < 0o. This means that the unstable domains are
little bit increasing with increasing 3 values as (Ho/H,) = 0.1 .

For (Ho/H,) = 0.2 , it is fonnd that the model is stable for

S-values : 0.01,0.03,0.05,0.07 and 0.09 , and there is no unstable domain.
However the stability domains are decreasing with increasing values of B in
the range 0 < 8 < 1.0 . This mean that 3 plays an important role in
shrinking the stable domains .

For (Ho/H,) = 1.0 , i.e., strong magnetic field is pervaded in this case
which is more than the previous cases, it is found that the model is MHD
stable for B-values : 0.01,0.03,0.05,0.07 and 0.09. However the MHD sta-
bility character is very strong and no expected unstable domains (whatever
is the large value of 8) occur and the stability is never suppressed.

From the foregoing discussions we conclude the following.

In the absence of the magnetic field, i.e. , Ho = 0, 8 = 0, the capillary
force has stabilizing effect in the domain 1 < z < co and destabilizing effect
in the domain 0 < z < 1. The magnetic field is strongly stabilizing while the
force-free magnetic field is destabilizing the fluid cylinder model, however as
the magnetic field is very strong, the (force free) S-destabilizing effect will
never be overcoming the stabilizing influence of the ordinary magnetic field
penetrated in the fluid medium.

7. Nonlinear perturbation analysis

We carry out a kind of nonlinear perturbation analysis introduced earlier by
Callebaut [21] and utilized by Radwan [24], [25] for investigating perturbation
of different models. Inserting the series development (18) with (19) into the
basic equations (1)- ~(9) for the interior of the fluid cylinder and equations
(12), (13) for the tenuous medium in the exterior of the fluid cylinder, one
obtain the second order perturbation equations as follows.

Interior of the fluid cylinder

20wy + (1, V), — % (HoV)H, + (Hy, V)H,) = —V&,  (53)
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Appropriate substitution of (56) and the results of the first order perturbation
into (53) and then integration of the resulting expression yields

—£y =200 1-&-931 +-1-( )—E-(H H)-C 65
2= 2 o2 g \t1-th gp 1 2% (65)

Alternatively, the second order magnetodynamic MHD pressure p¢, for the
interior of the fluid cylinder is given by

= i 48 [+ [ e
s (0% — 04) ((Jo(kr)? + 15 (kr)) — Cae

4 (=))?

(66)

where Cy is an arbitrary constant of integration. Moreover, the second order
magnetic field in the interior of the fluid cylinder, on utilizing (61), (62) and
the explicit forms for u; and H, , is given in the form

H,= {-_ﬂl_o_ze](’)(zkr) sin(2kz)} e, +{0}e

16(2:1-) (67)
—2Hg za i RoHp z ! 2 2
+ { I{,(%) ]0(2kr) COS(?’C.«) + 2([(’)(,))7 (kr ((IO(I)) + IO (kr)) } €.

Keeping in view the space-dependence, the second order perturbation equa-
tions (59) and (60) for the force-free tenuous region surrounding the fluid
cylinder are solved. The components of the second order perturbed force-
free magnetic field H £ are given by

HL(r, 2) = Har(r) sin(2k2) (68)
HI,(r, 2) = Has(r) cos(2kz) (69)
- HJ,(r,2) = Ha,(r) cos(2kz) (70)
such that
C ;
Hz,- ry=-—_"71 kKo 2 71
(r) ) (2€) (71)
c ;
Hay(r) = ———— K,(2 72
(r) ) (26) (72)

Ha, (r) = CKo(2€) (73)
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here C is an arbitrary function of integration and will be a complicted func-
tion of the ordinary and modified Bessel functions, £ (defined by (41)), Kp(2¢)
is the second kind modified Bessel function of order zero and the prime over
it means derivative with respect to argument. Noting that the first kind
modified Bessel function is omitted, since the solutions (68)- -(73) must be
finite as r tends to infinity. The solution (68)- -(73) are totally different and
also incisive and tremendous from those obtained recently by Radwan [22)-
-[25) and from the naive ones of Callebaut [21].

To determine C , we have to apply the continuity of the normal component
of the magnetic field across the fluid-force free regions interface at 7 = Ro.
After some lengthy and cumbersome calculations we get

o = BoyHoYi(nRo)  yHoYo(nFo) _ yKoly) _, _ zhl(z)
2Ko(2y) Ky(2y) Ko (2y) Io(=)
Now applying the boundary condition that the normal component of the total

stress tensor must be continuous across the fluid-force free regions interface
at the unperturbed position r = Ry , we get

(74)

(oe)a = (Lur’.1) (75)

2

taking into account that the interface is displaced with respect to the unper-
turbed boundary surface r = Ry , additional terms should be added if we
take the value at 7 = Rg. Using Taylor expansion, any physical quantity ¢,
in second order is expressed as

¢, 3<0+ Rzazgo

(02 &= CQ(RO) + *%l or 1 or2

where R; and R; are given by (21) and (63) together with (64). Note that
the left side of (75) could be expressed as

(p6)2 = (@) + (S (HH)) (77)

5 B2t (76)

with

@1 +R2'—"+ §R262p0

(p)2 = p2(Ro) + R~ or o 15,2

(78)
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H ’ ;
(H.H), = 2(ﬂo.ﬁ2)+2éﬁla(—g i 1)+H1 Hy+3 atla Hg +R, O(Ho-Hy) , at 7 = Rq

02

(79)
Substituting HY , H; (withi = 0,1,2) , ®,; and R; into equation (75), taking
into account (76) and (77), and then equating the quantities in cos(2kz) and
those which are free from cos(2kz), the second order perturbation coefficients
a and Cy are determined. These coefficients in their general forms are very
lengthy and too cumbersonic and arce therefore not given here. However, on
using the recurrence relations and second order differential Bessel equations
for the ordinary and modified Bessel functions, the coefficients a and Cy; are
simplified considerably and are given by

20,0y =~ 4 Y, (B)Yo(B) [—48 + (4 + zLo(z) + 32° L5 () Ko()]
36° + 22 + zy(Lo(z) + 32° 15" (z)) K22 — 2(6° + 1) Ko o)

+Y5(B)
+Y2(B) (4 + Lo(z) + 32°Ly ' (z))

(80)
4ay¥(6) (2L LR 1 40,(8)Y:(6) [2 ~ Lo(22) 5" (2)]
+4aY2(B) (1 - Lo(2:t)Lo 1(:z:))
=¥ (ﬂ)ﬂ2 + 22 — 2y% + Mo(y) [Mg(y) +3r2L5' (z) - Lo(x)] )
—'Mo(2y) (Lo(z) — Mo(y)) + BYo(B)Yi(B) [322 L5 (z) — 5Lo(z) + 4Mo(z) + Mo(2y))
+Y2 B) (4 + 16% + 322 L5 (z) — 3Lo(x))

(81)
where
Lo(z) = ‘”Ig‘zg) (82)
z Ko(z)
Mo(z) = Kifz) (83)

Moreover, if we assume that the force-free magnetic field is not perturbed
in the linear state and this could be achieved if B = 0 (see equation (43)),
the foregoing expressions (80) and (81) are s1mphﬁed considerably. Taking
into account that as HJ = 0 is not necessary HI=o.

As we can see, the second order coefficients are functions of the ordinary
and force-free wave numbers z and y , the force-free dimensionless parame-
ter 8 and ordinary and modified Bessel functions. Their discussions which
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required lengthy and accurate calculations, reveal that the stable or/and un-
stable perturbation modes do not alter directly under this technique. In
discussing their behavior the second order coefficients are found to be singu-
lar as z tends to zero. Therefore it might be proper to study second order
perturbation for m # 0 or/and taking into account the surface tension effect
or we may take other kind of flows e.g. swirling jet (see Shtern and Hussain
[26]). However, the latter seems to be a cumbersome which we propose to
do in future.

It is important to refer here also that some of the main features of the
non-linear theory are : (i) the higher order terms yield corrections to the
linear theory and (ii) it delimits the domain of validity of the linear theory
since no linear theory can predict its domain of validity.
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