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Abstract

The paper is concerned with the stabilization of an elastic beam nonlinear geometrically
subjected to a time-dependent axial forcing. The direct Liapunov method is proposed to
establish criteria for the almost sure stochastic stability of the unperturbed (trivial) solution of
the structure with closed-loop control. We construct the Liapunov functional as a sum of the
modified kinetic energy and the elastic energy of the structure The distributed control is
realized by the piezoelectric sensor and actuator, with the changing widths, glued to the upper
and lower beam surface. The paper is devoted to the stability analysis of the closed-loop
system described by the stochastic partial differential equation without a finite-dimensional
approach. The fluctuating axial force is modelled by the physically realizable ergodic process.
The rate velocity feedback is applied to stabilize the panel parametric vibrations. Calculations
are performed for the Gaussian process with given mean value and variance as well as for
the harmonic process with an amplitude A.

Introduction

Piezoelectric materials show great advantages as sensors and actuators in intelligent
structures i.e. structures with highly distributed actuators, sensors, and processor networks.
Piezoelectric sensors and actuators have been applied successfully in the closed-loop control
plates (DIMITRIADIS et al., 1991). A comprehensive static analysis for a piezoelectric
actuator glued to a beam was given by CRAWLEY and de LUIS (1987). The relationship
between static strains, both in the structure and in the actuator and the applied voltage across
the piezoelectric was presented. An extended dynamic model of beam, bonding layers, sensor
and piezoactuators with emphasis on active damping was considered (TYLIKOWSKI, 1994).
The direct Liapunov method was applied to the stabilization problem of the beam subjected to
2 wide-band axial time-dependent force (TYLIKOWSKI, 1995) and to a physically realizable
force (TYLIKOWSKI, 1999). Tzou and Fu (1992) analysed models of a plate with segmented
distributed piezoelectric sensors and actuators, and showed that segmenting improves the
observability and the controlability of the system. :

The purpose of the present paper is to solve an active control problem of beam parametric
vibrations excited by the axial randomly fluctuating force. Assuming the moderate transverse
displacement the geometrical nonlinearity is taken into account. The problem is solved using
the concept of distributed piezoelectric sensors and actuators with a sufficiently large value of
velocity feedback. Real mechanical systems are subjected not only to nontrivial initial
conditions but also to permanently acting excitations increasing the structure energy and the
active vibration control should be modify in order to balance the supplied energy by external
parametric excitation. The applicability of active vibration control is extended to distributed
systems with stochastic parametric excitation. The rate velocity feedback is applied to
stabilize the beam parametric vibrations. Applying the direct Liapunov method the sufficient



128 Andrzej Tylikowski

almost sure stability conditions for the beam with closed - loop control are derived. A relation
betweeen the stabilization effect in nonlinear and linear approach is derived. Almost sure
stability domains in terms of the effective retardation time, the feedback constant, and the
force mean value and variance are obtained. The fluctuating axial force is modelled by the
physically realizable ergodic process. The rate velocity feedback is applied to stabilize the
beam parametric vibrations. Calculations are performed for the Gaussian and harmonic
processes.

Sensor and Actuator Equations

Let us consider two opposite phase piezoelectric elements bonded to the elastic beam. The
normal stress due to the axial u and transverse w beam displacements is given by
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where E; denotes the sensor Young modulus, and z denotes the distance from the beam
neutral axis. Neglecting the influence of the axial displacement small as compared with the
transverse one we obtain the formula for the stress in the upper piezolayer
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where t, and t; denote the beam and the sensor thickness respectively. In similar way the
stress in the lower sensor is given by
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Subtracting electric displacement in the both layers we eliminate the nonlinear effect in
measurements and obtain
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Using the standard equation for capacitance the voltage produced by the measurement
sensors is as follows
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where @ is the sensor polarization profile suitably chosen. Usually the polarization profile is
determined by a changing width of sensor by(X). Using the velocity feedback control the
voltage applied to the actuator is given by

V,= ﬁ_d_‘.li (6)
C dt
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where K, is the feedback gain factor. Using the standard equation for capacitance the voltage
applied to the actuator is given by formula
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The normal stresses generated by the applied voltage are as follows

a
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The piezoelectric constant of actuator is denoted by dasi. The control bending moment can
be expressed by the actuator stress, the moment arm (t, + t;)/2 and the cross section area
t.ba(x) of actuator in the following way

MX =Gatn (tb +ta))a (X) (9)

Substituting the actuator stresses the control moment is related with the time derivative of
Beam curvature as follows

1
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where 1 is the beam length, and €33 represents the permittivity of sensor material.

Dynamics Equation With Distributed Feedback

A continuous mechanical system (beam or plate in a cylindrical bending) uni-axially
loaded in the middle plane by time-dependent force S=S, + S(t) is considered. The dynamics
equation of structure motion includes both an internal passive damping due to viscoelastic
properties and an active damping. Finite thickness piezoelectric patches are mounted on
spposite sides of the structure. It is assumed that the transverse motion dominates the axial
seam vibrations. The sensing and actuating effects of piezoelectric layers are used to extract
#he thechanical energy and in a final result to stabilize both the free vibration due to initial
disturbances and the parametric vibration excited by the time-dependent axial force. We
assume a negligible stiffness of the sensor in comparison with that of the structure and reduce
the influence of the piezoelectric actuator on the structure to shear forces in bonding layers
distributed over the structure surface. Vibration damping of the visco-elastic beam with
parametric excitation can be examined differentiating the total energy of the beam with
piezoelements (TYLIKOWSKI, 1995). The rate of energy extraction indicates that for the
sufficiently large gain factor it is possible to stabilize parametric vibrations. However, the
result did not provide an effective quantitive estimation of the minimal active damping
coefficients stabilizing the parametric vibration. If the parametric excitation is a realizable
ergodic stochastic process dynamic equation should be understood as the partial differential
equation with a random parameter.

Consider the Bernoulli-Euler beam axially loaded by a time-dependent force with
piezoelectric layers mounted on each of two opposite sides of the beam. The piezoelectric
layers are assumed to be bonded on the beam surfaces and the mechanical properties of the
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bonding material are represented by the effective retardation time of the beam treated as a
laminated beam . The effective retardation time is a linear function of both the beam and
bonding layer retardation times. It is assumed that the transverse motion dominates the axial
beam vibrations.

The thickness of the actuator and the sensor is denoted by t, and t,, respectively. The
sensing and actuating effects of piezoelectric layers are used to stabilize both the free
vibration due to initial disturbances and the parametric vibration excited by the axial force.
Assuming a negligible stiffness of the sensor in comparison with that of the beam and
reducing the influence of the piezoelectric actuator on the beam to a bending moment
distributed along the beam, the dynamics equations ' for the beam with distributed sensor and
actuator layers can be rewritten in the form

Pbt,Wr + E,JW e + MW oo )+
(11)
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where: T, X denote time and coordinate variable, respectively, W is the transverse
displacement, b and 1 denote the beam width and length, respectively, , Ey is the Young's
modulus of the beam, J is the cross-section moment of inertia, A is the effective retardation
time, Mx is the distributed moment of piezoelectric origin. An averaged geometrical
nonlinearity is represented by the integral in the third component of Eq. (11).

Introduce dimensionless variables: the time, the coordinate and transverse displacement
are given by

t=T(E,J / pbt,1*)'"*
x=X/l (12)
w=W/I

The reduced axial load, internal (passive) damping coefficient A and the active damping
coefficient B, are given respectively

o pbtl
f,+f)= EJ {S,, +S[t EJ H (13)
A =A% (pbt,E,J)" (14)
B, = K(t,,+t)(t,,+t)r,ddEE (15
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The dimensionless bending moment produced by the piezoelectric actuator is as follows

m,(x)=2p,b, (x)ljb,(x)w.mdx (16)
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For the case in which the bending moment is equal to zero at the beam ends, the beam can
be treated as simply supported. Thus, we assume that the beam transverse displacement
satisfies the following boundary conditions

w=0 w_=0 x=0,1 an

In dimensionless variables Eq. (11) becomes
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where a is the dimensionless nonlinearity coefficient. Equation (18) with zero initial
conditions w(x,0)= w (x,0) = 0 possess a trivial solution w(x,t) = 0, which corresponds to an
undeflected beam axis.

Almost Sure Stability Analysis

The purpose of the present paper is to derive criteria for solving the following problem:
will the deviations of beam axis from the unperturbed state (trivial solution) be sufficiently
small in some mathematical sense in the case when the axial force is the stochastic process.
The beam dynamically buckles when the axial force gets so large that the beam with closed-
loop control does not oscillate (vibrations of beam with closed- loop control does not decay)
and a new increasing mode of oscillations occurs. To estimate a perturbed solution of
equation (18) it is necessary to introduce a measure of distance of the solution with
nontrivial initial conditions from the trivial one. The most commonly used stability definition
used in continuum mechanics, states that an equilibrium state is stable whenever, in the
motion following any sufficiently small initial disturbances the displacement w and the
velocity w are everywhere arbitrarily small for all t > 0. In order to investigate the behavior of
the solutions of stochastic equations a modification of the Liapunov stability definition is
needed. The equilibrium state of equation ( is said. to be almost sure stochastically stable
(KOZIN, 1972), if

Pllim|w(., 0] =0]=1 (19)

In the present paper the direct Liapunov method is proposed to establish criteria for the
almost sure stability of the unperturbed (trivial) solution of the structure with closed-loop
control. The crucial point of the Liapunov method is a construction of a suitable functional,
which is positive-definite along any motion of the beam with closed-loop control. We
construct the Liapunov functional as a sum of the modified kinetic energy and the elastic
energy of the beam
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where V. is the Liapunov functional for the linearized equation (with a=0). If the classical
condition for the static buckling is fulfilled, functional (20) satisfies the desired positive-
definiteness condition, and the measure of distance between the perturbed solution and the
trivial one can be chosen as the square root of the functional

w]=v""> @n
If realizations of the processes are physically realizable the clasical calculus is applied to
calculate the time - derivative of functional (20). Differentiating V with respect to time

and eliminating w by means of Eq. (18 ) with a=0 we obtain

% =24V, +2U, 22)

where the auxiliary functional U is given by

1
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Let us focus our attention on the following particular shapes of piezoelectric elements.
The sensor and actuator are described by the sinusoidal function with diffrent maximum
widths by, b,, respectively

b (x)=b, sinmx b,(x)=b,sinmx (24)

The beam motion can be expanded into the following sine Fourier series satisfying the
boundary conditions (17)

w(x, )= 3 W (1) sinimx 25)

i=1

We are now in a position to calculate the spatial integral involved in the bending moment
(16) with the shape functions (24). We rewrite functional (23) in the form

U, = [l = = AS, + FOWh + Wh = F(Ow, w0, — P, sinmx(w, + Aw,,, )+
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where gain factor v is calculated from Eq. (24) and Eq. (16). According to Kozin’s method
we look for a function % statisfying the following variational inequality

U, <2V, @7)
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Solving the associate Euler equation (cf. TYLIKOWSKI, 1999) we obtain the the function
A in explicite form. Thus, if process f(t) is stationary and ergodic the sufficient condition for
the almost sure stochastic stability is

(x)<4 (28)
where angle brackets denote the mathematical expectation. It can be shown that

X =max x, (29)

i=1,2,.,
where sequence {y;, i=1,2,...} of functions satisfy the following sequence of inequalities
U,<xVu (30)

Functionals Uy; and Vy; are fuctionals U and V calculated at w(x) = sin inx. The auxiliary
linearized problem being solved we can now direct our attention to the nonlinear operator
equation (18). The time-derivative of funvtional V along arbitrary solution of the nonlinear
equation (18) is given as follows

1 2
LAy B jw’,dx +
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We see that the following variational inequality is true for an arbitrary function satisfying
the simply supported boundary condition

31)
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Itis ;aasy to notice that the following chain of inequalities holds
AV 24V, 20U, 2U (33)

Therefore the almost sure stability of the linearized problem implies the stability of
nonlinear problem.

Inequality (28) gives us a possibility to obtain minimal effective retardation times
guaranteeing the almost sure asymptotic stability called critical retardation times. A domain
where retardation times are greater than the critical ratardation times is called the stability
region. The stability regions as functions of constant component of axial force fo, axial
loading variance , effective retardation time , and gain factor are calculated numerically.
First, discrete values of force are chosen and the largest value x corresponding to the
given value of force is determined and the expectation is calculated numerically integrating
the product of by the probability density function of loading. This is accomplished for
various values of parameters by choosing the variance and varying the retardation time until
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inequality (28) will be satisfied. Numerical calculations are performed for the Gaussian
process with the mean F and variance o and for the harmonic process with an amplitude A. In
order to compare both processes the variance of harmonic process ¢ = A?/2 is used. The
almost sure stability region of beam axially loaded by the zero mean Gaussian process 1s
shown in Fig. 1.

variance

002 004 006 0.08 0.1
retardation time

Fig. 1 Stability regions of beam for the zero mean Gaussian force.

It is seen that the stability regions increase as the gain factor increases. Figure 2 compares
the stability regions for the beam with the zero mean force loaded by the Gaussian and
harmonic processes. It is visible that the influence of the class of excitation is not
substantial.

0.005 0.01 0.015 0.02
retardation time

Fig. 2 Comparison of stability regions for the Gaussian and harmonic process

Figure 3 shows the critical variance versus the retardation time for the beam loaded by the
constant force close to the static buckling load n%. The increase of critical variances is much
more slower in comparison to the zero mean loading.It is necessary to emphasise that the
results are obtained for the particular sinusoidal shapes of distributed sensor and actuator.
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Fig. 3 Influence of constant compresive force on stability regions
for the Gaussian loading.

Conclusions

By means of the direct Liapunov method the active stabilization of a vibrating beamn with
distributed piezoelectric sensor, actuator, and the velocity feedback has been studied. The
elastic beam is simply supported and subject to a compressive axial force randomly
fluctuating. Without any passive damping and control, the beam motion is unstable due to the
parametric excitation. The stabilization of stochastic parametric vibrations needs sufficiently
large active damping coefficient proportional to the gain factor. Admissible variances of
loading strongly depend on the feedback gain factor. The stability regions do not change
qualitatively in going from the Gaussian process to the harmonic one, but the Gaussian
loading needs smaller critical retardation time than the harmonic loading. For no axial force,
this is the case of free vibration due to the nontrivial initial conditions. As long as the active or
passive damping is present, the system is stable and oscillations decay.
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