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Abstract

The present study is devoted to investigate the influences of hall
current on unsteady free convection flow of magnetohydrodynamic non-
Newtonian' viscoelastic incompressible fluid with mass transfer over an
infinite vertical porous plate.

The system is stressed by uniform magnetic field acting in a plane,
which makes an angle awith the plane transverse to the plate over an
infinite vertical porous plate. The Walter’s model is used to characterize
the non-Newtonian fluid behavior. Similarity solution for the transformed
governing equations is obtained with prescribed variable suction velocity.
Numerical results for the details of the velocity, temperature and
concentration profiles are shown on graphs. Excess surface temperature
as well as concentration gradient at the wall have been presented for
different values of the elasticity parameter n,, magnetic parameter M,

Schmidt number S, , Grashof number G,, modified Grashof number G,,
Hall parameter m, Dufour number Df, Soret number S, and

permeability parameter k.
Introduction:

Non-Newtonian fluids are of increasing importance in modern
technology. This was probably caused by the growing use of non-
Newtonian fluids in many activities such as molten plastics, paints,
drilling of petroleum, and polymer solutions.

The boundary layer concept in the theory of non-Newtonian
fluids is relevant to a number of engineering activities, among which may
be cited the possibility of reducing frictional dragon bearings and on
immersed bodies such as ship hulls and submarines.
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The range of free-convection flows that can occur in nature and in
engineering practice is very large and has been extensively considered by
Jaluria [1]. On the other hand, many flows are subjected to a combination
of free and forced convection and are known as combined free-forced
convection flows. Heated jets or diffusion flames created by blowing
combustible gas from a vertical pipe are controlled by forced convection
in the initial region and by buoyancy forces far from the jet or pipe exist.
Industrial smokes takes usually have a significant imposed momentum
flux to assist the initial rise of the contaminant plume [2]. The simplest
physical model of such a flow is the two-dimensional laminar flow along
a vertical flat plate and extensive studied have been conducted on this
type of flow [3-8]. Recent results of application of this model can be
found in the area of reactor safety, combustion flames and solar
collectors, as well as building energy conservation [9].

Because of the application to nuclear reactors or in the study of
the magnetohydrodynamic (MHD) properties of stars and planets,
considerable interest has grown up regarding the effect of an applied
magnetic filed on unsteady free convection flow along a vertical surface
[10], and when the strength of the magnetic filed is very strong, there
appears the well known phenomena of the hall effect, which has
important engineering applications to flows in channels and ducts and to
problems of MHD generators and hall accelerators. In recent years, the
effect of hall currents on hydromagnetic Newtonian flow along a vertical
surface and in the presence of a transverse magnetic filed with or without
heat and mass transfer have been studied by a number of authors [11-13].
The above type of flow through a porous medium has, however, been
studied by, among others [14-15].

Hence, the objective of this work is to investigate the thermal
diffusion and diffusion thermal effects as well as the hall effect on the
unsteady MHD non-Newtonian viscoelastic free convection flow with
mass transfer through a porous medium, along an infinite vertical porous
plate.

Formulation of the problem and similarity analysis:

We consider an unsteady free convection and mass transfer of a
viscoelastic incompressible and electrically conducting fluid, through a
porous medium, over an infinite vertical porous plate subjected to time
dependent suction velocity. The flow is assumed to be in the x-direction,
which is taken along the vertical plate in the upward direction, and the y-
axis is taken to be normal to the plate. The surface of the plate is
maintained a uniform constant temperature 7, and a uniform constant

concentration ¢, of a foreign fluid, which are higher than the
corresponding values T, and c,, respectively, sufficiently far away from
the surface. Here, the fluid is permeated by a strong magnetic filed
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Bsuch that B= (o,,% B,,\1- 2B, ) where A(= Cosa)is the angle made

by Bwith the normal to the plate. In addition we shall neglect the
induced magnetic field which is possible for a very small magnetic
Reynolds umber. Under these assumptions the unsteady laminar free
convection flow and mass transfer with hall current of a non-Newtonian
fluid, is described by the following equations (1)-(5) and boundary
conditions (6).

The continuity equation:
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In the above equation u,w are the barycentric fluid velocity components

along and perpendicular to the surface of the flat plate, respectively, v is
the suction velocity, Tand care the temperature and concentration,
respectively, of the fluid, vis the kinematic viscosity, kis the
permeability of the porous medium, 7,is the elasticity coefficient, p is

the density of the fluid, o is the electric conductivity, 4, is the magnetic
permeability, k,is the thermal conductivity, c,is the specific heat at
constant pressure, Bis the volumetric coefficient of thermal expansion,
B’ is the volumetric coefficient of expansion with concentration, g is the
acceleration due to gravity, D, is the coefficient of mass diffusivity, k; is
the thermal diffusion ratio, 7,is the mean fluid temperature, c,is the
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concentration susceptibility and m(=w,r,) is the hall cyclotron

frequency of an electron and the electron collision time, respectively. The
dimensionless variables chosen are:

n=ylh, u=uf(m), w=u,G(n),

T=T,+ (;Ic—h')g(ﬂ)s c=c,+(c, —c,)p(m) -

0

@)

where, A (= 2@ )is a length scale [13] and u, is the free steam velocity.
In terms of A(z), a convenient solution of continuity equation (1) can
be given as:
v =-v,(v/h), ®
where v, is a non-dimensional transpiration parameter.
Introducing (7) and (8) into equations (2)-(6) results in
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where primes denote partial differentiation with respect to variable 7 and
the dimensionless parameter are defined as:
o

= is the elastic parameter,
D, = Dy (e = co kot is the Dufour number,
cs Cp q
= —2—%‘1——— is the Soret number,
v*(c, = coYkotho T
2
G = gzﬂq hz is the Grashof number,
v kyu,

* 2
G, = 8B (en )l is the modified Grashof number,
VU,
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2p22

M = THe Nd
pv

is the magnetic parameter,

L k . oy
k = ) is the permeability parameter,

puc, .
P = . is the Prandtl number,

0

S, = —g— is the Schmidt number.

Equation (9)-(12), with boundary conditions (13), describe the
unsteady motion of the MHD viscoelastic free convection flow with mass
transfer through a porous medium over an infinite vertical porous plate.

For Newtonian fluid (s, = 0)and when D, and S, equal to zero,

our system of equations reduce to the system of equation suggested by

[13].
Now to solve the system of equation (9)-(12) with boundary
condition (13) we shall use the perturbation technique for small n,,

where
f=fo+n,f +O(ng)
G =G, +n,G, +0(n§)
8 =80,+n,6, +0(n§) ;
P=0, +nd + O(no)
The coefficients of higher power of n, (m 2 2)have negligible

conmbutlon, thus we neglect them. By this method we can obtain,
theoretically, the approximate solutions. Substitution (14) in (9)-(13) and
equating like powers of n, we have:
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MA
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for fis Gos G,, 6,, 6, b, 620, N

By applying the numerical explicit method [17] we can obtain the
solutions of our system of equations (15-22) subjected to the boundary
conditions (23). Hence, the velocity distribution, temperature distribution
and concentration distribution of the fluid motion as well as the skin-
friction, heat and mass transfer are illustrated and discussed graphically
with the various parameter of the problem.

Results and discussion:

In this problem we have used perturbation method with elasticity as a
parameter to obtain the numerical solutions of the momentum, energy
and ' concentration equations. The formulation of the velocity,
temperature, concentration, heat transfer, and mass transfer of the non-
Newtonian fluid flowing through a porous medium over an infinite
vertical porous plate in the presence of the uniform magnetic filed are
presented and shown graphically for different values of the problem
parameters.

Figure (1) and (2) show the relation between the velocity
components of the fluid motion with the elasticity parameter 7, . Itis

clear that the velocities increase (or decrease) with increasing the
elasticity parameter in the regions illustrated in the figures.

In figures (3-6), the relation between the longitudinal and transverse
velocity with the Grashof number G, and modified Grashof number G,

is illustrated. It is clear that the two components of velocity increase with
G, , while they are increases or decreases with increasing of the modified

Grashof number G, .

Figure (7) and (8) illustrate the effect of the magnetic parameter
M on the velocity components. It is clear that the longitudinal component
of the velocity decreases with the parameter M, while the transverse
component increases with the parameter M, respectively. The effect of
the hall parameter m is shown in figure (9) and (10). It is clear that the
longitudinal velocity increases with m, while the transverse component
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Figure (1) The velocity component F plotted versus Position with the effect of elasticity
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Figure (2) The velocity component G plotted versus Position with the effect of elasticity
Parameter N, .
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Figure (3) The velocity component F plotted versus Position with the effect of Grashof
number.
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Figure (4) The velocity component G plotted versus Position with the effect of Grashof
number.
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Figure (5) The velocity component F plotted versus Position with the effect of modified

Grashof number.
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Figure (6) The velocity component G plotted versus Position with the effect of modified
Grashof number.
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Figure (7) The velocity component F plotted versus Position with the effect of magnetic
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Figure (8) The velocity component G plotted versus Position with the effect of magnetic
Parameter. ’
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Figure (9) The velocity component F plotted versus Position with the effect of Hall
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Figure (10) The velocity component G plotted versus Position with the effect of Hall
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Figure (11) The velocity component F plotted versus Position with the effect of Dufour
number.
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Figure (12) The velocity component G plotted versus Position with the effect of Dufour
number. ‘
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Figure (13) The velocity component F plotted versus Position with the effect of
permeability parameter.
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Figure (14) The velocity component G plotted versus Position with the effect of
permeability parameter.
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Figure (15) Temperature plotted versus Position with the effect of elasticity Prandtl
number ‘
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Figure (16) Concentration plotted versus Position with the effect of elasticity Schmidt
number
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Figure (17) Concentration plotted versus Position with the effect of Soret number.
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Figure (18) The rate of heat transfer plotted versus Position with the effect of Prandtl
number.
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Figure (19) The rate of mass transfer plotted versus Position with the effect of Soret
number.

increases or decreases with m, respectively. The effect of the Dufour
number D on the longitudinal component of the velocity F and the
transverse component G are shown in figure (11) and (12), respectively.
The longitudinal velocity increases or decreases with increasing values of
D,. Also, the transverse velocity G decreases with increasing values of

D,. Figure (13)and (14) illustrate the relation between the components

of the velocity and the permeability parameter k’. Itisclear that the

permeability parameter k'is to increase the velocity components F and
G. It is seen from figure (15) that the temperature increases with
increasing of the Prandtl number 7, . The effect of the Schmidt number

S.is to decrease the concentration, this Shown in figure (16). Also, the
effect of the Soret number S,on the concentration of the fluid @is
illustrated in figure (17). The concentration field increases with
increasing S,. Finally, the effects of Prandtl number P, and the Soret
number S,on both the rate of heat transfer and the rate of mass transfer

are illustrate through figure (18) and (19). It is clear that the rate of heat
transfer and the rate of mass transfer increases or decreases with

increasing of P,and S,, respectively.
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