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Abstract

A theoretical analysis of heat transfer of steady, incompressible and electrically
conducting non-Newtonian Casson fluid flow between two rotating cylinders under a
radial magnetic field is studied. The problem is considered when the inner cylinder is
at rest and the outer cylinder rotating with a constant velocity. In this paper, the
velocity distribution, magnetic induction, the temperature distribution, stress, shear
rates and rate of heat transfer are obtained analytically by using perturbation technique and
shown graphically for various values of aspect ratio, Casson number, Eckert number
and magnetic parameter. The critical values of Casson number have been determined.

Introduction

The model of Casson fluid is concerned as one of the most important applications
of theoretical fluid mechanics to problems arising in physiology, mainly in describing
the flow of the blood. Casson [1] proposed a model to describe the flow curves of
suspensions of pigments in lithographic varnishes used for the preparation of printing
inks. Haldar et al. [2] proposed two layered model of blood flow through stenosed
arteries, their model was consisted of a peripheral plasma layer free from red cells and
core region represented by a Casson fluid. Pham et al. [3] studied numerically the
entry and exit flows of Casson fluids and they used Casson constitutive equation
recommended for describing blood flow with an appropriate modification proposed
by Papanastasiou, which applies everywhere in the flow field in both yielded and
unyielded region.
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Srivastava et al. [4] investigated the problem of blood flow through an axially
nonsymmetrical but radially symmetric stenosed tube when the blood is represented
by a Casson fluid and a Newtonian fluid. A mathematical model for solute transfer in
blood flow through cylindrical tube with permeable wall has been proposed by Indira
et al. [5], the blood is represented by the Casson fluid model with constant viscosity.
The solute transfer within and across the tube wall is considered to be both by
diffusion and convection. Yan et al. [6] discussed the problem of yield surface of
viscoelastic and plastic fluids in a vane viscometer the shear stress was determined by
assuming that the material is held in space between the vane blades so that it behaves
like a rigid cylinder, the finite element method has been used to model the behavior of
Herschel-Bulkely (Bingham), Casson and viscoelastic (Maxwell type) fluids. Dash et
al. [7] investigated the effect of yield stress on the flow characteristics of a Casson
fluid in a homogeneous porous medium bounded by a circular tube and they
employed the Brinkman model to account for the Darcy resistance offered by the
porous medium. Dash et al. [8] studied the changed flow pattern in a narrow
catheterized artery and an estimate of the increased flow resistance is made. The
anomalous behavior of blood in small blood vessels has been taken into account by
modeling blood as a Casson fluid. The importance of Casson fluid in describing
blood is introduced by Mazumdar [9].

Bigyani et al. [10] studied the flow of Casson fluid between two rotating
cylinders they, also, defined ‘Casson fluid as a shear thinning fluid which has an
infinite viscosity at zero shear rates, a yield stress below which no flow occurs and a
zero viscosity at infinite rates of flow. Various experiments preformed on blood with
varying hematocrit, anticoagulants, temperature, etc., strongly suggest its non-
Newtonian behaviour which has been shown to obey stress-strain relation for Casson
liquid. [11-14] verified this finding. Jones [15] investigated that the flow of the blood
in a circular tube can be considered as a Casson fluid.

Shul’man [16] studied the flow of Casson fluid through an infinite annular
channel under the action of a constant pressure gradient. The numerical solution of the
entrance flow for a Casson fluid obtained by Shah et al. [17] and for annular tube by
Liu et al. [18]. Victor et al. [19] presented steady state heat transfer to blood flow in
the entrance region of a tube and they considered it as a Casson fluid. The problem of
blood flow considered as a Casson fluid through non-circular ducts has been
investigated by Batra [20]. Godbole et al. [21] studied a finite element analysis of
blood flow obeying Casson’s relation. Casson’s constitutive equation has been found
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to be accurately applicable by [22-23]. Sundstrom et al. [24] studied laminar free
covection in inclined rectangular enclosures. Nield et al. [25] have been investigated
forced convection in a fluid-saturated porous medium channel with isothermal or
isoflux boundaries. Viscoplastic flow between approaching or parallel circular plates
presented by Klimov et al. [26]. Kashevarov [27] obtained an exact solution of the
problem of convection heat exchang for an elliptic cylinder and a plate in a fluid with
small Prandt] number. Michio Yoneya et al. [28] studied a forced convection heat
transfer from circular cylinder with constant heat flux in saturated porous medium.

Eldabe and Oaf [29] analyzed the flow and heat transfer of dilute polymer
solutions through porous medium between two horizontal plates, and according to the
Denn model, which represents the rheological behaviors of dilute polymer solutions,
they obtained the analytical expressions for the velocity and temperature fields. The
non-Newtonian flow formation in Coutte motion in magnetohydrodynamics (MHD)
with time varying suction, was investigated by Eldabe and Ahmed [30], the
viscoelastic fluid used in this research was suggested by Walters [31]. Eldabe and
Elmohandis [32] extended the problem of Eldabe and Ahmed for a pulsatile
viscoelastic flow through a channel bounded two permeable parallel plates. Eldabe et
al. [33] studied unsteady magnetic boundary-layer flow of power-law non-Newtonian
conducting fluid through porous medium past an infinite porous flat plate.

The main idea of this work is to study the mathematical analysis of the
magnetohydrodynamic non-Newtonian Casson fluid flow between two rotating
cylinders, in the presence of a radial magpetic field, and showing the relation between
the different parameters of the motion and external forces, in order to investigate how
to control the motion of the fluid by changing these parameters and external forces.
Some of the applications concerning this idea are the flow of oil under ground where
there is a natural magnetic field. The other example is the motion of the blood through
the arteries.

Basic Equations
The rheological equation of state for an isotropic, incompressible flow of a
Casson fluid can be written as [34],
Ty ="P5;j +2/‘(j2)eij: (l)
where
2
;1(_1'2)=(KC j;/‘ +2‘% ry%) j;% is the apparent viscosity. p, 7,. and K} are

pressure, yield stress and Casson’s coefficient of viscosity respectively. & is the
Kronecker delta and e;, 7, are the rate of strain tensor and stress components
respectively. j, = %e,.j e, is the rate of strain tensor invariant. The flow conditions are
given by [33]
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e; =0 if j; <7,
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—_ . < 4
where  j =Zt,fj tr,is the second invariant of deviatoric stress tensor and

1, =7, + pd; is deviatoric stress component.

The basic equations of motion MHD neglecting displacement current and free
charges are

Maxwell’s equations
0H,

dx, - ®)

oH,

A @
0H, JE,
ket BT Wi 83

Fl G ) ©)
Ohm’s equation,
J,.=0'(E,.+/1,£,.ﬂ‘ij,,). (6)
Equations of motion, continuity and energy are respectively:

Dv, 0t;

—t=—Y sy, J H, 7
TR TR (7)
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—+ pe,; =0, , 8
Y R ®)

0 2 ov,
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where J,,o,u,, H,, E; and v; represent current density, electrical conductivity,
magnetic permeability, magnetic field, electric field and the velocity respectively, p is the
density, ¢ is the heat capacity, k is the thermal conductivity, T is the temperature,
and the rate of strain tensor can be written as

e. =‘;‘(Ui.j +vj_,.), _ (10)

b

Mathematical Analysis
Let us consider an electrically conducting, non-Newtonian Casson incompressible

fluid flow between two rotating cylinders of radii g and b (6> a). The system is
stressed by an external radial magnetic field of strength H, a/r . The cylindrical polar
coordinates system (7,6, z) are used with origin at the center of the cross section of
the cylinders. With these assumption for steady, laminar, axisymmetrical, peripheral
the velocity is (0,u(r)0) and the magnetic field is H (H,a/r,h(r),0). From eq. (1)
the corresponding stress tensor component is given by

T,0 =(ry% +KC(2e,9)%)2, (1)
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where,

€o = —(%—%) (12)

According to our considerations eqs. (7-9) can be written as

u® 9 hd
& =gg+y,——<rh) ©)
dz, 21,,
dr r r’ (h) < (14)
op
ZF_o
Fiak (1s)

k

dr* rdr

d? 1dT
[ . ——:\+27 S + (—(rh)) (16)
Also, Ohm’s low takes the form,

Jz —_-O-(E,__'L‘_‘g‘ﬁu), ‘ (17)

r
where J, =l-£1—(rh).
rdr

The appropriate boundary conditions of this problem are

Y.K?
ro =2t 5u=0) h=0, T=T, p=ppU’, at r=a
b
1 09
w:YchU(;H’C)—-)(u:ﬂU), T=T, at r=b
-br, .
where ¥, = —2 is the Casson number.

c

Let us introduce the following non-dimensional variables as:

O RS PR . B
X L ® U *Tou HU’ U
= b 15)
. . D
O@=—"\ K= -—P_ E=ouHUE
=l cu H,U' o U s

‘The equations (13-17) in dimensionless form aﬁer dropping star mark may be written
as

2
' _dp KM hd ., (20)
r dr r dr
dt,, 21,9 M?*a d
- h)=0, 21
ey —rh)= (21)

-—E;(rh)=b(E—grl), (22)
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d’e de d & oY

2 2

r 57 +r I +¢ Ec[Zb r'rye,, +M2(E(rh)J =0, (23)
ouK: K:? A

where K| = L , 6 =—"—and E,_ = L is the Eckert number.

P k ¢ T,-T,

Subjected to the dimensionless boundary conditions

[

%—)(u=0) ®=0, h=0, p=p, at r=a

1 (24)
z',,=Yc(-b-+Yc)—->(u=ﬂ) ®=], at r=1

where a = afb is the aspect ratio.

Substitute from (11), (12) and (22) in (21), we obtain the following non-linear
differential equation

Trﬂ

2
r “ddr—é” +3r d; —a?b* M1,y +2a°bJbY, M* 13 —a’ MY, = 0. (25)
r r
In order to solve the equation (25) according to the boundary conditions (24) let,
e (26)
1
ro =5+ 8O0 + 2O + &) +O(F) (7)

substituting from (26), (27) in (25), comparing the coefficients of ¥.*, Y, ®, Y'and

c»%e¢o

neglecting higher order of ¥,', we obtain the following differential equations

Z§g° +2‘;gg +a’M*b*g, =0, ' (28)
2

as gz, +2d—g‘-+a’M2b2g1 = —zazMszgZ, (29)
d¢ dé 4
d’ ag, dg, 2ps2p2 23243

+2—= M*b ———-a M*b " 30
ToRE T LR A e &0 & (30)
according to (24) the boundary conditions on g,, &;,and g, are
£ =8=£=0 at ¢=Loga,
£,=,8=8,=0 at £=0, (31)

the solutions of equations (28-30) subjected to the boundary conditions (31), can be
obtained as,

b ¢ _ A phd
go(é)za - a';‘e ’ (32)

a* -a
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£,(E)=Cy (@, A A ) 4 Cy(@ s A )% + AWM — Qg™ — 28, (33)

g,(£)= At — A, + AethE A 5 Oyflo s B o G (@A, i JEE
— AP RE 4 e (34)

where A,,.,4, and the functions C (@A As) s Ca (@ Aser As) Ay )
C.(a, 4,4, ) are defined in the appendix.

Ty

For real values of A, A, it’s necessary that Y<¥ ohee Y =————7—2 is
A Ay ary 1 'S bUGuH?

the critical Casson number.

Magnetic Induction:
Substituting from (26), (27) in (21), the magnetic induction can be represented as,

s Fﬂ(az _,fu )+ (f; —go(-f))Yf -7} 8.6)-Y & («5)]- (35)

M?*al b e

Rate of Strain
From (11) the rate of sgrain takes the form

o= 0@+ (50+ F 5@ (260800 O} 69

The Velocity of The fluid
Substituting from equations (36), (26) in (12) the velocity distribution can be written

u = ¢t [F(£)- F(Log @)} 67)

The Pressure of the Fluid
In order to obtain the pressure of the fluid substitute from (35), (37) in (20), so it takes
the following formula

p=F2(§)—F2(Loga)+ D (39)

The Temperature Distribution

Substituting from (26), 27), (3 5) and (36) in (23), the temperature distribution can be

obtained as,

o-allilogd- B0, g [R0)-FE)I (@)
Loga Loga

where F, (&) ,F, (&) and F, (&) are defined in the appendix.
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Rate of Heat Transfer

Non dimensional form of the rate of heat transfer on the outer cylinder can be
written as:

Q = 91;___0 , (43)

0= 25 [F,(Loga)-F, (0)- . E, - Fi(0)Loga (44)
Loga

Discussions

In this paper we proposed the problem of heat transfer of Casson fluid between
two rotating cylinders, under the action of radial magnetic field. The non linear partial
differential equations have been calculated approximately by using perturbation
theory for small Casson number.

Figure (1) shows that the velocity distribution increases as Casson number
increases in the core of flow region, when the value of aspect ratio & = 0.5, magnetic
parameter M = 6. While in figure (2) the velocity distribution decreases as magnetic
parameter increases, for Casson number ¥, = 0.58, aspect ratioar = 0.5. From figure
(3) it’s clear that the magnetic induction increases as Casson number increases for
magnetic parameter M =7 and aspect ratio & = 0.2.

The effect of aspect ratio on the magnetic induction is presented in figure (3), for
Ex-1.7 to &~-126it is clear that the magnetic induction increases with increasing
of values of aspect ratio, while it decreasing for & > —1.26. The pressure of the fluid
in the flow region increases as Casson number increases and this is obviously clear
from figure (5), for magnetic parameter M =4.5 and aspect ratio a = 0.1. On the
other hand, figure (6) shows that the pressure distribution decreases as magnetic
parameter increases in the case of Casson number Y, = 0.63 and aspect ratio o =0.1.

Figure (7) illustrates the effect of Casson number on the temperature distribution
where it’s increases as Casson number increases in the case of aspect ratio a = 0.2
and Eckert number E, =6. Also the temperature increases as Eckert number

increases for aspect ratio « = 0.2 and Casson number ¥, =0.65, this is clear in the

figure (8). Figure (9) shows the relation between rate of heat transfer and Casson
number, it is clear that the rate of heat transfer decreases as Casson number increases.
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150

Fig. (1). Velocity distribution plotted against & ?
u

Fig. (2). Velocity distribution plotted against & .
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Fig. (4). Magnetic induction plotted against £ .
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Fig. (5). Pressure of the fluid plotted against & . .

p

100 +

so |

Fig. (6). Pressure of the fluid plotted against .
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0.5

Fig. (7). Temperature distribution plotted against & .

(O]

Fig. (8). Temperature distribution plotted against & .
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Fig. (9). Rate of heat transfer plotted against Y, .
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Appendix :
A==l+yl-a®M*b*, A, =-1-Jl-a*M?*b?,
1= 3al,+/1,+2M2b3
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200 —a* P (1, + 4,0 +2(4, + )+ a* 52|
3a2(2,+l)M2b3

N 4(0:“1 —a")z [42,,2 +44 +a2M2bT]’
g 32 r2p3

g 4(a’1‘ -a* )2 [4).2 +44, +a2M2b2]’
_ Sa ™ M4,
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3a"”M’b3[13a"(l—a“)+ﬂ.4(au‘ —a“)+,15 a“(a"' —l)]
2(a"' ——a"‘)z[4lf +44 +a’M2b2] ’

3ah? M’ b’[l A (gt - 1)+ 4, a*(i- a“)+ﬂ. (a* —a“‘)]
ala —ar P[4z +42, +a? M ’
30 M (@™ A, +a™A,)
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i) e A h el 1)
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Cy (@A 45)=

Cyla, Ay Ayy) = [As(a”‘ -an )+ A a™ (l -a*h )+ Ay (az’1 -an )+

Ay {l-a* )+ 4, 0™ (-a* )+ 2, a* (@ -1)] Ja* -a™

)+
2, [ i )= [Z a“( a“‘) (3" -a )+,1.aat’11 (l a*)+
+A,a ( ot <1 )p A, a*(1- a““)] [a™ —a*
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F(€)=2[e,ds F ()= 2]( ’—KM’——- ‘h))dg

—a*

F3(¢) (Zb Trﬂ erﬂ ezg _g_ % { h) Jdg
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