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Abstract

In this paper the steady motion of an electrically conducting, viscous and
incompressible non-Newtonian fluid past a porous flat plate under a transverse
magnetic filed is considered. Analytically expressions for the velocity, temperature,
skin friction and magnetic induction have been obtained by using the perturbation
technique. Our results are compared with the previous ordinary Newtonian fluid
results. The results have been shown graphically, and the effect of different parameters
on the velocity, the magnetic induction, coefficient of skin friction and temperature are
discussed in these cases.

Introduction

Previous studies for free convection flow of electrically conducting fluids along a
vertical or horizontal flat plates were restricted, in general, to Newtonian fluids only,
[Gubta (1), P. C. Lue (2), Masuoka (3) ]. Few pay attention to the problem of natural
convection of electrically conducting non-Newtonian fluids. However, the study of
electrically conducting non-Newtonian fluids is important in a number of geophysical
and other engineering applications, such as petroleum drillings. Eldabe. et. al. (4-9)
studied some problems of Newtonian and non-Newtonian fluids, which flowing on an
infinite plate and between two parallel plates. The problem of free convection flow of
an electrically conducting non-Newtonian fluid obeying along a horizontal porous flat
plate is considered in this paper and we assumed that the system is stressed by a
transverse magnetic filed. The governing partial differential equations for this problem
can be transformed into a set of coupled ordinary differential equations, which can be
solved analytically by using the perturbation technique.
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Basic equations

The constitutive equation for incompressible visco-elastic fluids suggested by
[10]is

1, =2y d,-2) E;+4y did,, U
where
i .
d; = E("u + vj.i)’ @)
1 m
E, = _Z—(au +a;; +2v; "m.j) , ©)
, A
a,(Acceleration vector)= —a—t' +VV @)

v, is the velocity vector. A comma followed by an index implies covariant differentiation .
u, A, andy are material constants representing, respectively, viscosity, elastico-viscosity,
and cross-viscosity coefficients of the fluid. ‘

The basic equations of magnetohydrodynamics (MHD) neglecting the displacement
currents and free charges are [11]

V.7 =0, (5)
V-H=0, | (6)
VAA=J, (7)
J=o(E+py Af), (8)
4 v)V:lF-lvmlv.H&JAH, ()
p PP p
(V-v)r:z'fzvzr+;1:r,,.-§xvf+pla(J-J), (10)
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Here H is the magnetic field, E the electric field, J is the current density, F is the body
forces per unit mass, T is the temperature, and 7 is defined by (1). Also
p.u, .0 and P denote, respectively, the density, magnetic permeability, conductivity and
fluid pressure.

Analysis
We consider an electrically conducting non-Newtonian fluid flowing along a
horizontal porous wall, such that x and y axes are taken parallel and perpendicular to

the wall, respectively. The system is stressed by a transverse uniform magnetic filed of
strength H,, we are take into account the effect of free convection when the body

force per unit mass is acting in the negative x-direction. We assume that all variables,
except the pressure p are functions of y only, then we have '

7 = (u,v,0),and A =(H,,H,),

from (6) we get H, = H,, is the applied field.

Equation (5) gives

v = constant= -V, , (say), (11)
where v, is the suction velocity of the fluid at the wall.

Now we can write the equations which describe our problem as following

du o d*u du dH,

_pvojd;=_-a;—pg+y;;’7+lv0;-+u,Hy-zy— ) (12)
Oz_@_“‘deH, ’ a3)
oy dy
2
0=i(uH0+voH,)+——l—~d Ii" N 4
dy po dy
ar &7 (d)  1(dH,Y
= ok —tpul—| +—|—= >, (15)
Py = gy “(dy) v(dy)

where g is the acceleration according to gravity.
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" 17/ :
From equation (13) we find that 5‘;—’ must be a function of x only, then we can write

op

— =Constant=-p_g ,

o P8

(16)

Under the assumption of semi-incompressibility for the fluid we can write

P-P.=-pBO , an

where B is the thermal coefficient of volumetric expansion.
The appropriate boundary conditions are

u(O) =0, u (co) =u,, | (18)
7(0)=1,, T(w)=T,, (19)
H,0)=H,, H ()= 0. (20)

Let us introduce the non-dimensional quantities as follows

,

: N Tl
=v,u ,H :Hh, L i y =_1,9= o
u 0 x 1} y Voy q vo T(‘)—T:D
p v
A = =—— ,is the elasticity parameter,
vo

MJH: 3 %
§ = —*—-, is the magnetic parameter,
pv

0

u

v = — ,is the kinematic viscosity ;
;P , (21)
=P , is the reciprocal of magnetic Rynolds number,
Hpo
pe .
P = = ,is the Prandt]l number ,
G= M‘g;;"—) , is the Grashof number,
PV
2
E = —_— ,is the Eckart number.
of.-T,)

by virtue of equation (21) , equation (12-15) with boundary conditions become after
dropping the star mark
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Au"+u"+u' +SH =-G6, (22)
(u-q)+h+¢ H =0, (23)
0"+ PO =-PE(uY -\ PEuW -5 PE(KY, (24)

where dash denotes the differentiation with respect to y.
And the boundary conditions

u=0,0=1, aty=0
1 ;} 2s)

u—>q,0>0,h—>0asy—>
Equation (22) reduces to that governing the flow of a Newtonian fluid if A = 0. Also,
we find that the order of the governing equation increases from two to three owing to
the presence of the elastic property of the fluid.
Equation (24) for very small values of Eckart number becomes
6"+PO'=0. (26)
The general solution of (26) using the boundary conditions (25) for the temperature is

0= e‘l’ry ’ ' (27)

using (27) with (22) and integrating the resultant equation with respect to y we get
1 G —p.y ] ’
e € e -reaf - 0] os)

inserting (28) in (23) we get

oA L +@+2) S +@+) F-(-)S=We” . (e)

1
where f =u—q and W =—G(¢——).
Now we assume the solution of equation (29) in the form

f=h+rf, (30)

this assumption is satisfied in the case of liquids with short memories, see{1 0].
Inserting (30) in (29) and equating the coefficients of A , we obtain
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¢ fi+@+) f-(S-D)fi=We"" , @1
¢ [+ F-(S-D A== -1 (32)
with appropriate boundary conditions

ftl)=_q' j;=0’aty=0 (33)
fi—0, fi—>0,asy > wf

The solutions of the system of equations (31) and (32) subject to the boundary
conditions (33) is obtained analytically and gives the following form of the velocity
distribution of the fluid,

u=g 'AW,y-AW,-z-q)+e " "(AW, +2)+q . (35)
Where
N CR3) L2 CRIVET YT il e
2¢
Lo w
o p-@+1)p,-(S-1) °
w =28 -0p w, a2y o)y’
w ¢-27v¢+1

Now to obtain the solution of the magnetic induction h, we shall assume that
h=hy+2h, (36)
by using (35) and (36) with (28) we get

¢ (a+2) '~y + 1)+ A MA-7)+ AW, y-y-1)

1
L1 ) (37
S +e—p,y(£+,1 w,(p, _1)—2(&;1,2 - Db +1))
p

L ¢

The coefficient of skin-friction in the dimensionless form for non-Newtonian fluid at the
plate takes the form

from (35) we get



Yree-convechon mugnﬂéﬁwhbhjhﬁﬁ\\‘i%\»‘ﬂ%ﬁ\%\\&4‘\.‘%\\%‘&&%&3@&(.“ R

C, =1(g+z)-pz+Aly W+ W, - pW,~1*(g+2)+ pz).

Results and discussion

The system of equations for the problem is solved analytically by using
perturbation method, to determine the expressions for temperature, velocity, magnetic
induction and skin friction. The effect of various parameters of the problem are
discussed to illustrate the different between Newtonian (4 = 0) and non-Newtonian
fluids (A #0). The results of present investigation are equivalently in agreement with
the general results, although different types of flow and values are considered.

Figures (1-5) illustrate the effect of the elasticity parameter A , Grashof number G,
Prandtl number P, the reciprocal of magnetic Rynolds number ¢ and the magnetic
parameter S on the velocity profile. It is clear that the velocity increases as A, G,
P and ¢ increases, while the velocity decreases as S increase. From figures (6-10) we

notes that the magnetic induction increases when S, P, and ¢ decreases, and increases

with the increasing of both A and G. Figure (11) shows that the temperature decreases
with increasing of Prandtl number. Finally it seems from figures (12) and (13) that the
coefficient of skin friction increases when A decreases and both P. and S increases.
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Figure (1) the velocity plotted versus position for
g=1,6=3,G=2 ,p,=05,5=2.

Figure (2) the velocity plotted versus position for
q=1,6=3,p,=05,8=2.



Free-convection magnetohydrodynamic flow for non-Newtonian fluid. .. 231

u
P -t Sy

f & o ~Z T
1.2 | ,/”/ St

3 /// "\ Py

L rr

7/
1t 1y
L b
£ i

3 K

0.8 ”I' i A
1 ==

r {lll -z })r=07
0.6 | " G

3 J o

I’l //’ \\-.

L ,(J ’ R=0.5

0.4 2
v, P =03
L ’
/
02}t SN &:0
L
I — A =02
O &
0 1 2 3 4

Figure (3) the velocity plotted versus position for
g=1,6=3,G=2,8=2.
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Figure (4) the velocity plotted versus position for
q=1,G=2,p,=0.5,S=2.
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Figure (5) the velocity plotted versus position for
q=1,G=2,p =05,4¢=3.

Figure (6) the magnetic induction plotted versus position for
g=1,G=2,p,=07,¢=3.
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Figure (7)themgngticinduction plotted versus position for
g=1,G=2,8=5,¢=3.
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' Figure (8) the magnetic induction plotted versus position for
g=1,G=2,p,=07,5=5.
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Figure (9) the magnetic induction plotted versus position for
g=1,G=2,p,=07,$=3,5=5.

Figure (10) the magnetic induction plotted versus position for
q=l,S=5,P,=0-7’¢=3~
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Figure (11) the temperature plotted versus position for
p,=03,p,=05,p, =07 .
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Figure (12) the coefficient of skin friction plotted versus elasticity parameter for
g=1,5=2,G=2,¢=3. ‘
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Figure (13)thecoeﬁcieMOfskinﬁ-icﬁonpbmdversusehsinitnyor

q:],G:Z,p'=0.3,¢=3.
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