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Abstract

The problem of mixed convection along non-isothermal vertical flat plate embedded in a
porous medium with variable permeability is analyzed. Non-similar solutions are obtained for

the power- law variation of the surface heat flux in the form q,,(x) =bx™. The entire mixed

; o R !
convection regime is covered by non-similarity parameter { = [1+(Rax/ Pe?(/z)”3 T , from
pure forced convection =1 to pure free convection {=0.0. A finite difference

scheme was used to solve the system of transformed governing equations. Velocity and
temperature profiles, and local Nusselt numbers are presented. It is found that as { decreases

from 1 to O, the thermal boundary thickness increases first and then decreases. But the local

Nusselt number in the form Nu,((Pc,(”2 +Rax“ 3)7! decreases first and then increases. The
variation of permeability increases Nusselt number of all values of .

Introduction

The problem of natural convection or mixed convection boundary layer flow along an
impermeable surface embedded in fluid a saturated porous medium has received much
attention in recent years. Many of studies [1-5] were based on Darcy's law, which neglects
the viscous force acting on the impermeable surface. From the work of Hong et al. [6], Darcy’
s model's is still acceptable, especially when the flow velocity is low and the heat transfer is
of interest.

Hsieh et al. [7] reported non-similar solutions for the problem of mixed convection along a
vertical flat plate embedded in porous media by dividing the entire mixed convection regime
into two regions, one covers the forced convection dominated regime and the others covers
the free convection regime. Two different non-similarity parameters were found to
characterize the two separate regions.

Most of the published results are limited to situations in which similarity solutions
exist [1,2]. A general similarity transformation for mixed convection flow in porous media
was reported by Nakayama and Koyama [8] for different types of geometries. However the
flow and thermal fields in mixed convection from surfaces in porous medium are non-similar
in nature. Nakayama and Pop [9] proposed a unified similarity transformation to cover all
possible similarity solutions for free, forced and mixed convection within Darcy and non-
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Darcy porous media, but the cases they considered for solutions were restricted to the local
similarity approximations. Chamakha and Khanafer [10] formulated the problem of combined
forced-free convection flow over an isothermal vertical surface embedded in a variable
porosity porous medium with heat generation or absorption. Verma and Vyas [11]
investigated the flow of fluid past a porous spherical shell when the permeability at any point
of the shell varies as some power of its radial distance from the center. Chandrasekhara et al.
[12 ] studied the influence of variable permeability on the basic flows in porous media, their
results show that the variable permeability have an appreciable influence on the heat transfer
rate. Ibrahim and Hassanien [16] repoted non-similarity solutions for the variable
permeability on combined convection along a non-isothermal wedge in a saturated porous
medium. The problem of Nonsimilarity solutions for mixed convection flow along non-
isothermal vertical surfaces embedded in porous media with variable permeability formalited
by Hassanien and Omer[17]. A nonsimilar boundary layer analysis was analyzed for the
problem of non-Darcian mixed convection in power-law type non-Newtonian fluids along a
vertical plate embedded in a fluid-saturated porous media by Ibrahim[18].

The objective of the present work is to investigate the influence of variable
permeability K(y) on mixed convection heat transfer along a vertical surface embedded in
porous media, under the condition of power low variation of surface heat flux in the form

1
qw(x)=bx™. The single parameter { = [1 +(Ra, IPe?(/Z)”3

which varies from 1 for
pure forced convection to O for pure free convection, is introduced to cover the entire mixed
convection regime. Numerical results were obtained by using a finite difference scheme to
solve the transformed systems of equations. Results of major interest, such as temperature
profiles, velocity profiles, and the local Nusselt number are presented for some representative
values of the power—law variation of surface heat flux for the cases of uniform and variable

permeability.
Analysis

Consider the problem of mixed convection along an impermeable vertical flat plate
embedded in a fluid saturated porous medium. The vertical plate is assumed to be heated in

such away that its surface heat flux varies in the power-law form, g, (X) = bx™ where b is a

constant and m is the exponent. The axial and normal coordinates are x and y. The
gravitational acceleration g is acting downward in the direction opposite to the x coordinate.
For the mathematical analysis of the problem, fluid properties are assumed to be constant
expect for variations in density, permeability and thermal resistance are functions of vertical
coordinate y, and the porous media is treated as isotropic. In addition, the flow velocity and
the pores of the porous medium are assumed to be small for the Darcy's model to be valid [6]
with these assumptions and the applications of Boussinesq and boundary layer
approximations, the governing system of conservation equations can be written as

du odv
=0 1
ax +ay (b
ou _K(y)gpp oT  _u K@)

dy 1 dy K(y) dy

2
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In the above equations, u and v are Darcy's velocities in the x and y directions; T is the
temperature; p, B and P are the density, thermal expansion coefficient of the fluid and

dynamic viscosity. K (y) and OL(y) are respectively, the permeability and equivalent thermal
diffusivity of the porous media.

Here we assume that the porosity €(y) and the permeability K(y) vary exponential
from the wall [13].

K(y)=K.(1+de?'%), ey)=e, (1+de?'¥) (4)

Where K, ,€_ are the permeability and porosity at the edge of the boundary layer d, d’
are constants, where values taken 3.0 and 1.5, respectively [13]. Further,
o(y)=2An,(y) /(p,,cp)f also varies since it is related to the effective thermal conductivity of

the saturated porous mediumAp(y). An(y) can be computed according to the following
semi-analytical expression given by Nayagam et al. [14]. Ay, =A¢€+(1-€)A;, Where A and
A, are the thermal conductivities of the fluid and solid, respectively.

Hence the expression for the thermal diffusivity has the form

oy) = o e (1+de Y *)+o(-e, (1 +d’e ), 5)

where
o, = }.f /(p,,cp)f and o= Ks /Kf
The boundary conditions for the present problem are

v=0 . s qu(x)=bx™ at y=0 (6)
u-U, , T->T, as y—oo N
Where b and m are prescribed constants. #

It is noted that the case of uniform surface heat flux corresponds to m=0. -
To facilitate the present analysis, the system of equations (2-4) will be transformed into
dimensionless form by introducing

n=-i-PeL’2 -l ®)

(T-T.)Pel/2¢™
qy (x)x/K_
-1

[Rax ]1/3
Eot ] i (10)

pel/?

v=aPel 2G|, 8¢, = )
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Where the stream function Y satisfies the continuity equation (1) with u =dy/dy and
v=-3y/dx, Pe, =U,_ x/a is the local Peclet number, Ra, =gBq,, (x)Kx? /kvais the
. local Rayleigh number, and {is the non-similarity mixed convection parameter and we have

choose k = x Pe;” ZC such that K(y) and o(y) are purely function of 1 only .

Substituting equations (8)-(10) into equations (2)-(4) one can obtain the following system
of equations: -

s de™ A
£ =(1-5)>(1+de n)9—( e 11)f (11)
AB'=—5[1+—;—(2m+1)(1—C)]fB’+2m+1[1-—(1 0If’e
(12)
1 of _,00
2 - —-f'— “o-1)0
+6( m+1){1 c)[e 3 £’ az;]” d'e(c-1)0
Where
A=[z»:,,+o(l—£,,)+s,,d‘e’"(l—c)]
With the boundary conditions
Bl ety L AL _ _
2[1+3(2m+1)(1 01,0 6(2m~i-l)C(l {H—=— a =0 or f(£,0)=0 (13)

gE0=-1, ') =%  8(,)=0

The primes in equations (11)-(13) denote partial differentiation with respect to 1.

The system of equations (11)-(13) for the variable heat flux can be solved using a finite
differences method.

We now obtain an approximate solution to equations (11)-(13) based on the local s1m11ar1ty
and local non-similarity methods [19]. For the first level of truncation the € derivatives in
equations (12) and (13) can be neglected. Thus, the governing equations for the first level of
the truncation are equation (11) and the following equation:-

2m+1[1——(1 OIfB+e.deNc-16  (14)

N "%U * %(2m + (1= D))’ +

With the boundary conditions.

f(£,0)=0, 9°(,0)=-1
f'Ge)=t> 8 =)=0 (15)

For the second level of truncation, we introduce G = df /9{ and ¢ =96/, and restore all
of neglected terms in the first level of truncation. Thus, the governing equations are equation
(11) and the following equation: -
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2m+1
2
+é(2m +DCA-O)0G - 9]l +e.d’e™ (o -1’

A0’=——-;—[1+%(2m+1)(1—{)]f9'+ [l—%(l—{)jf@

(16)

With the same boundary conditions defined in equation (15)

The introduction of the two new dependent variables G and ¢ in the problem requires two
additional equations with appropriate boundary conditions. This can be obtained by
differentiating equation (11), (15), and (16) with respect to { and neglecting the terms
0G/9d{ and d¢/9C, which leads to

» 2 -ha' 3 Ny’ de™ .
G” = -3(1-0)%(1+de ™M@ + (1- {1 +de ™) —( ] a7
) 14+de™
» ’ /- 2
Ad =—%[1+§<2m+1>(1—t;)1(f¢ +GO)+ “’2’“‘[1—%(1—@)1
(fo+0G") + 2m+1f9+%[1+%(2m+l)]f9’+%(2m +1) (18)

L1 -Q)IGY -G+ -;'(Zm +1)(1-20)[6'G - 9] —e..d’e (1 -0)¢

The corresponding boundary conditions are given as
0(£,0)=0,G(£,0)=0,G"(§, =) =28, §(C,) =0 (19)

The physical quantities of interest include the velocity components u and v, the wall shear
stress T,, defined as T, = n(u/ Z)y)y=0 and the local Nusselt number Nu, =hx/A¢ where

h=q, (x)T, -T..). They are given by:-

u=U_{2f’ (20)
1) 2g“{[l +1(2r'n +)(1-0If - [l —1(2m +1)
X 2 6 2 6 i
- ot
1-Omf’ - 5 2m+DEI-8) 3C}
2
1, (C)(Pe!/? +Ra'/?) ™ = £7(5,0) @
po :
Nu, (Pel/2 +Ral/?)! = = o . / (23)
X VX : :‘X 'l‘/ e(c,‘o) § | ; 5 .

Numerical scheme

The numerical scheme to solve the coupled nonlinear equations (11),(12),(14),(16), (17)
and (18) with boundary conditions (13),(15) and (19) is based on the following concepts :



160 F. S. Ibrahim, Gh. M. Omer

@) The boundary conditions for 11 — e are replaced by
(i)
£'(CNmax) =82, 8% Nimax) =0
G'(CMmax) =28, &(C,Nmax ) =0 (24)

Where M, is sufficiently value of M where the boundary conditions for velocity field is
satisfied.

(ii) The two-dimensional domain of interest, ({,1) is discretized with an equi-spaced mesh in
the C direction and another equi-spaced mesh in the 1) direction.

(iii) The partial derivatives with respect to { and 1 are all evaluated by the central difference
approximations.

~ (iv) Two iteration loops based on the successive substitution are used because of the
nonlinearly of the equations.

(v) In each inner iteration loop, the value of { is fixed while each of the equations is solved
as linear second—order boundary value problem of ordinary differential on the 1 domain. The
inner iteration is continued until the nonlinear solution converges for the fixed value of {.

(vi) In the outer iteration loop, the value of { is advanced from O tol. The derivatives with
respect to { are updated after every outer iteration step.

More details on the numerical scheme are explained in Pereyra[20]. It is worth noting that
step size of An=0.02 and A{=0.05, and m.. of 8-18 were found to be satisfactory for a

convergence with relative error of 107 in nearly all cases.

7
6 -
m=-0.5 — P

5 = ==VP

)

\
" \
3 {=0.0,0.25,0.5,0.75,1.0

f(Cm)

Fig.1. Velocity profile for various values of { with m=-05
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Results and Discussions

Numerical results are obtained for varies values of m and {, for both uniform permeability

(UP), ie., d=d'=0 and variable permeability (VP), ie., d,d” # Ocases. The mixed
. convection parameter { ranged between O and 1, increments of 0.05. For the purpose of

numerical integration we have assumed d=3.0, d'=1.5 and € = 0.4 (see Chandrasekara et al.
[12].

To asses the accuracy of our results, we have shown a comparison of our results with those
Hsieh et al. [7] in Table 1 for the flow over a flat plate, in the case of uniform permeability. A
comparison of our results with those from the literature indicates that the agreement between
the two good.

Figures (1-8) show the dimensionless velocity profiles f’({,n) and temperature profiles
8(L,m) at selected values of m and ¢ for both UP and VP cases. It can be seen from figures
(1-4) that at a given value of { the velocity gradient at the wall increases and the momentum
boundary layer thickness decreases as m increases.

Also from figures (5-8) we can see that for a given value of {, as m increases the thermal
boundary layer thickness decreases and the temperature gradient at the wall increases. This
means that a higher value of the heat transfer rate is associated a higher value of m. Further,
from these figures variable permeability effect increase the velocity and reduce the thermal
boundary leading to an enhancement of heat transfer rate. Figure 9 shows the local Nusselt
number in terms of 1/6(£,0) or Nux(Pe;/ A +Ra1x/ 3)'l at selected values of m for UP and
VP cases. At a given value of { as m increases the Nusselt number increases. This increment
is higher for VP case than UP one. It is also seen the Nusselt number curve initially decreases
as { increases from O until they reach a minimum value and therefore increases as {
increases further to 1.0. These local minima occur at certain values of { which depends on
the values of m as well as the variation of the permeability.

Conclusions

In this paper, nonsimilarity solutions for mixed convection from vertical plate embedded in
porous medium with variable permeability has been analyzed for the case of power-law
variation in surface heat flux.

The entire mixed convection regime is covered by a single nonsimilarity parameter

(= [1+ (Ra, /Peilz)” 3]_1 from pure forced convection ({=1) to pure free convection
(£ =0). The boundary layer equations were solved numerically by means of finite difference
method. Profiles for the velocity and temperature fields as well as the variation of the local
heat transfer fields at the wall with { are presented at selected values of the exponent m for
the surface heat flux for uniform and variable permeability. The results clearly indicate that
the local Nusselt number increase with increasing value of the exponent m for a given { for
both uniform and variable permeability cases.
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C Hsieh et al .[7] Present results
m=-0.5 m=0.0 m=0.5 m=1.0 m=-0.5 m=0.0 m=0.5 m=1.0
0.0 0.5818 0.7979 0.8998 0.9999 0.58187 0.77158 0.89987 1.00004
0.1 0.5257 0.7127 0.8154 0.9070 0.52589 0.6987 0.81592 0.9076
0.2 0.4749 0.6364 0.7448  0.8313 0.47519 0.63565 0.74558 0.83209
0.3 0.4315 0.5790 0.6930 0.7791 0.43181 0.5858 0.69335 0.77913
0.4 0.3986 0.5508 0.6623 0.7588 0.39895 0.55486 0.66728 0.75892
0.5 0.3812 0.5548 0.6765 0.7800 0.38146 0.55126 0.67855 0.78443
0.6 0.3840 0.5853 0.7248 0.8258 0.38497 0.58145 0.73173 0.8571
0.7 04112 0.6350 0.8058 0.9463 0.41142 0.64014 0.81412 0.95851
0.8 0.4563 0.6983 0.9064 1.0672 0.45528 0.71524 0.91142 1.07406
0.9 0.5082 0.7715 1.0159 1.1968 0.50816 0.79871 1.01731 1.19865
1.0 0.5642 0.8863 1.1284 1.3294 0.56419 0.88623 1.12838 1.32934
Table 1. Comparison values of Nu, /(Pt:]x/2 + Ral):3) =1/0({,0) at selected values of € and m for
uniform permeability (UP)case
m=-0.5 m=0.0 m=0.5 m=1.0

4 UP VP UP VP UP VP UP VP

0.0 0.58187 0.92905 0.77158 1.12259 0.89987 1.2624 1.00004 1.3745

0.1 0.52589 0.85679 0.6987 1.03599 0.81592 1.16541 0.9076 1.26916

0.2 0.47519 0.79472 0.63565 0.96426 0.74558 1.08746 0.83209 1.18668

0.3 0.43181 0.74846 0.5858 0.91476 0.69335 1.03769 0.77913 1.1381

0.4 0.39895 0.72568 0.55486 0.89789 0.66728 1.02972 0.75892 1.14014

0.5 0.38146 0.73411 0.55126 0.9234 0.67855 1.0751 0.78443 1.20505

0.6 0.38497 0.77508 0.58145 0.99058 0.73173 1.16817 0.8571 1.32109

0.7 0.41142 0.83997 0.64014 1.08628 0.81412 1.28973 0.95851 1.46447

0.8 0.45528 0.91709 0.71524 1.19714 0.91142 1.42643 1.07406 1.62291

0.9 0.50816 0.99839 0.79871 1.31511 1.01731 1.57169 1.19865 1.79108

1.0 0.56419 1.07987 0.88623 1.43591 1.12838 1.72174 1.32934 1.9655

Table 2. Results for the local Nusselt number Nu, /(Pey

1/2

g Ra:(/3) =1/ e(C,O) at selected values of C,

and M for uniform permeability (UP) and variable permeability (VP) cases.
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Fig.2. Velocity profile for various values of C withm=0.0
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Fig.3. Velocity profile for various values of C withm=0.5
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Fig.4. Velocity profile for various values of C with m=1.0
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Fig.5. Temperature profile for various values of C_, withm=-0.5
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Fig.7. Temperature profile for various values of € withm=0.5
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Fig.8. Temperature profile for various values of withm= 1.0
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Fig.9. local Nusselt number in terms of 1/6(£,0) or Nu,(Pe
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Notation
b, m real constants in equation(6)
d constant defined in equation ( 4)
d constant defined in equation (4 )
f dimensionless stream function
G dimensionless normal velocity 3f /9 {
g gravitational acceleration
h local heat transfer coefficient
k Coefficient defined by equation (4)
K(y) permeability of porous medium
K_ permeability of the porous medium at the edge of the boundary
a(y) thermal conductivity of the saturated porous medium
Nu, local Nusselt number
Pe, local Peclet number
Ra, local Rayliegh number
T fluid temperature
Tw wall temperature
Too free stream temperature
u streamwise velocity component
Uoco free stream velocity
v normal velocity component
b3 axial coordinate
y normal coordinate
Greek symbols
ofy) thermal diffusivity
o, thermal diffusivity at the edge of the boundary layer
B volumetric coefficient of thermal expansion
&(y) porosity of the saturated porous medium
£ porosity of the saturated porous medium at the edge of the boundary layer

pseudo-similarity variable

dimensionless temperature

Thermal diffusivity of the fluid

Thermal diffusivity of the solid

effective thermal conductivity of the saturated porous medium

8

dynamic viscosity of the fluid

kinematic viscosity of the fluid

mixed convection parameter

fluid density

ratio of thermal conductivity of the solid to the fluid

dimensionless temperature gradient with (00 / al; )

stream function

Subscripts

conditions at the wall
conditions at the free stream
fluid

sold
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