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Abstract

The problem of active damping of cantilever beam transverse vibrations is considered, by
using a collocated piezoceramic sensor and actuator. Experimental results of free vibrations
confirmed the effectiveness of the control circuit with the analog derivative controller for
suppression of a low-frequency beam motion. Theoretical analysis is based on the simplified
pure bending model of interaction between the piezoactuator and the beam with a constant
equivalent stiffness. The viscoelastic material parameters of the tested beam are estimated
considering the fundamental frequency and logarithmic decrement of transient vibrations. The
results of simulation, even for the applied simplified model of the system, are in a good
agreement with the experiment.

1. Introduction

Piezoelectric materials such as lead zirconate titanate (PZT) ceramics and vinylidene
fluoride (PVDF) polymers become popular in the use for a flexible structure controlling.
Applications of distributed piezoelectric sensors and actuators for active damping of beams
and thin plates are investigated theoretically and verified experimentally by many researches
([11, [2], [4] among others). The analysis is commonly based on a pure bending interaction of
a perfectly bonded mass less actuator (cf. [1], [2], [3], [6], [7])- The static approach is a
simplification of the coupling model but occurs quite reasonable for piezoelectric patches or
layers which mass can be ignored in the system motion description (cf.[5]).

In this paper, the control system with piezoceramic sensors and actuators designed for
active damping of a cantilever beam is experimentally tested and analyzed theoretically.
Experiments show that the beam vibrations are reduced significantly by using the analog
control circuit with velocity feedback. Numerical simulations performed using the static
coupling model confirm experimental results of the free vibration control.

2. Experimental arrangement

To test the active damping of vibration using a piezoelectric control system, experiments
were performed on a cantilever beam. The geometry of the tested beam is shown in Fig. 1.



112 Marek Pietrzakowski

268

Fig.1. Schematic of the tested beam

The beam is constructed of stainless steel strip of length / =270 mm, width 5 = 25 mm and
thickness #, = 1 mm, clamped at one end and free at the other. The sensor and actuator formed
by a pair of piezoceramic patches are bonded on opposite sides 46 mm from the root of the
beam. The pair of “QickPack” piezoceramic transducers is used, QP10N type (50.8 x 25.4 x
0.381 mm) as the actuator and QP15N type (50.8 x 25.4 x 0.254 mm) as the sensor [8]. They
are attached to the beam surface using a two-part epoxy resin recommended for “QickPack”
products.

The experimental investigation concerned suppression of the transient vibrations referred
to the first-mode. The fundamental frequency of the beam with the piezoceramic patches was
experimentally obtained to be w, =73.8 1/s (11.75 Hz).

The control loop is composed using analog techniques. The signal from the piezosensor is
fed to a pre-amplifier and then is transformed by the derivative (D) controller due to the
velocity feedback control strategy. Differentiation of the sensor signal introduces time delay
in the control system, which can be significant for higher natural frequencies. Therefore,
filtering is necessary to remove the high-frequency components of the control signal to avoid
instability of the beam vibrations. The RC filter is installed between the pre-amplifier and the
controller and is designed to eliminate any electrical signal with frequencies above 200 1/s
(=32 Hz). The signal from the controller is finally amplified via the power amplifier and is
then fed to the actuator to generate control response to suppress the vibrations.

For the detection of the beam motion, a strain gauge system mounted near the clamped end
is applied. The signal from the gauges working in a half bridge is sent to the measure
amplifier (Spider 8 from HBM) with analogue to digital (AD) converter installed and then
recorded on a hard disk on PC. The “Catman” data acquisition system is used for analyzing
data and visualizing results.
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The experimental setup for active control of the cantilever beam is presented in Fig. 2.
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Fig. 2. Experimental setup

Experiments were performed on the free vibrations of the beam; first without and then with
the active control system. The motion of the near-tip beam point at 2 mm from the free end is
detected.

For an initiation of free vibrations the tip of the beam is deflected by about 3 mm and then
released. The transient vibrations of the beam point represented uncontrolled system and the
actively damped beam with the various control gain x are shown in Fig. 3. The control gain x
is defined as a ratio of the magnitude of the output voltage ¥, applied to the actuator and the
input voltage V; generated by the sensor, x =V, /¥ . It can be clearly noticed that the damping
ratio increases significantly with an increase of the control gain parameter. But the control
system effectiveness is limited because of the high vibration modes, which are generated for
sufficiently great values of the gain.

The passive damping observed for uncontrolled beam response (see Fig. 3) is combined
effects due to material damping, air damping and damping created by the measuring
equipment. The level of the high frequency components is low for the uncontrolled as well as
controlled vibrations mainly due to the low-pass filter installed in the control circuit.
Therefore, estimation of the damping coefficient, both for passive and active cases, can be
based on the classical logarithmic decrement concept. The logarithmic decrement o is
expressed by the well-known relation
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Fig. 3. Free vibrations of the tested beam without and with active damping.
Effects of passive damping and variation in the control gain
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rithmic decrement, which quite well approximates energy dissipation of the tested beam, is

determined as 6= 0.0435.
The active damping effectiveness depending on the control gain is shown in Fig. 5. In this
case the mean logarithmic decrement is calculated for the sequential amplitudes 1 period
apart. The number of recorded

05 peaks varied from 5 to 15 for the

S high and low control . gain,

£ 04 respectively. The plot shows that

£ the damping intensity increases
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Fig. 5. Logarithmic decrement vs. the control gain vibration amplitude increases

significantly for a greater control
gain parameter. A disadvantage of the used analog control system is an excitation of the high
vibration components observed for the extremely great gain values.

3. Theoretical relations for the actively damped beam

The dynamic analysis of the considered system can be simplified by imposing the static
pure bending model of coupling between the beam and the perfectly bonded piezoelement.
Due to this model the actuator action caused by the applied voltage is reduced to bending
moments at both ends of the piezoceramic patch. The transverse motion of the controlled
viscoelastic beam with a uniform bending stiffness and mass density, which is excited by the
point force F(f) can be described as follows

8w 2w 3w 8M,(x,1)
E”J"(:;x? *”m)*”b”’b o7 = FOse-x )= @

where E,, J, indicate the beam Young modulus and the cross-sectional moment of inertia,
respectively, b, t,pp are the beam width, thickness and mass density, respectively, u is the
viscous internal damping parameter of Voigt-Kelvin model, x; is the co-ordinate of the point
force, & (x) denotes the Dirac function.

The bending moment M,(x,?) is distributed along the actuator and can be calculated taking
into account the constitutive equation of the piezoelectric material and the moment
equilibrium of the resultant forces acting in the cross-section of the beam (cf. [11, [6] among
others)

M, (x,1)=C,b,(x)V, () ©)
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where V,(f) is the voltage applied to the actuator, by(x) is the piezoelectric patch width
distribution described using the Heaviside function, b,(x)=b[H(x-x,)- H(x~x, )], C. is the

actuator constant given by the relation
a 2
- dSlEaEb (tb + tatb )
* " 2E¢, +Ept, +EL,)

@

where dj; is the actuator piezoelectric constant, E, ,, and E,, t; denote the Young modulus
and thickness of the actuator and the sensor, respectively.

The input voltage V,(f) is generated by the piezoceramic sensor as a result of its
deformation and then transformed via the controller due to the applied control function.
Assuming the sensor strains to be the same as that of the beam surface, the voltage produced
by the sensor after integrating the charge over the sensor electrode can be given by the
integral

Lotw
Vs (t) = _Cs 6“;;2_ bp (x)dx (5)
where C; is the sensor constant
(, +1,)
C =d, E.~—>—*~ 6
s 31™s 2C ( )

where d, is the sensor piezoelectric constant, C is the total sensor capacitance, C = 4,e;; ¢, ,
with A4, — sensor electrode area, e33; — permittivity of the sensor material.

Assuming velocity feedback and after substituting Eq. (4) the control bending moment, Eq.
(3), can be rewritten as follows

e 3w
M, (x,t)=k,C,C.b ———b,(x)dx 7
a(x t) d~a“s p(x)a‘.axzat p(x) ( )

where k; is the velocity gain factor of the control loop.

The response of the actively damped beam subjected to a harmonic excitation can be
expressed in terms of transfer function. The block diagram with the velocity feedback is
shown in Fig. 6.

F(t) we(t) w(t)
—»| Guwr "
- wa(t)
vi(® Vi)
anv -t Gy <% Gow
Actuator Controller Sensor

Fig. 6. Block diagram of the system
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The steady-state solution to Eq. (2) can be written using the modal superposition

ZC " (x)explicor) 3

n=1

where C, are the amplitude coefficients,  is the frequency of excitation, #y(x) denote the
modal shape functions.

The modal functions are determined by the boundary conditions and for a cantilever beam of
length / heaving one end fixed and other free are expressed in the well-known form

W, (x) = (sin k,/ +sinh k,/)(cosh k,x —cos k,x)-(cosk,! +cosh k,)(sinh k,x - sin k,x) (9)
where k, are the roots of the frequency equation cosk,/coshk,/ = —1 with the values of k,/ =

1.875, 4.694, 7.855,..., 0.5(2n-Nz .

The transfer function G, relating the beam deflection to the loading force is given by the
formula

o)) 1 Wl )
Gy (r,0)= F(w) pbbtb;:y:(m —o +ipn'o) a0

where , is the nth natural frequency

o, =k} =L (1)

!
and y? = jW,,z (x)dx.
0

The transfer function of the output beam deflection to the input actuator voltage can be
obtained in the form

; wire) _ C, < % W(X) L -
G (x,0)= 7,(@) pbbt..gr,f(wf —0 +ipwlo) e

where T, is the actuator shape factor
] (13)

ld*b

7= 228y (- b("W - ()
3 dr

The output voltage of the sensor caused by the beam deflection is given by the relation

Gy (@)

G,, (x, a)) = _C-;-w; (x, a))

A
x3 dx

(14

where G, describes the response of the sensor voltage to the input external force and has the
form .
G: (o )_V(a)) i S W(xf) 15)
p,,bt,, ! -0 +ipe, (o)

Considering velocity feedback, the controller transforms the input voltage signal according to
the relation
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G, (o)=ik,0 (16)
where k, is the derivative gain factor.
The closed-loop transfer function of the controlled beam is given by the well-known equation

G, |
G=1c W

where G, is the open-loop transfer function defined as the following product
G, =G,G,G,, (18)

Free vibrations of the beam can be analyzed using the impulse transfer function. The time-
response of the system to the impact F(f) = 8(¢) is defined as the inverse Fourier transform

of the transfer function Gc(x, @)

R (x,t)= 2—17; IGC (x, @) expliot)do (19)

4. Results of simulation

The numerical simulation was performed for the model of the system which geometry is
described in the Chapter 2. It is assumed that the Young modulus of the stainless steel beam is
. E, = 2.05x10"" N/m’. The material viscous damping parameter (Voigt-Kelvin model) is
calculated for free vibrations of the tested beam due to the relation x = &/(7w,). Substituting

the fundamental frequency a; = 73.8 1/s and the mean logarithmic decrement 5=10.0435, the
damping parameter is estimated to be = 1.88x10™s. :

Applying the simple static coupling model with the constant stiffness and mass density
along the beam (Chapter 3), the Young modulus is derived to be Ej = 2.19x 10" N/m? in order
to match the theoretical first natural frequency of the beam with the measured one. This is
justified because of the local stiffening effect of the piezoceramic patches.

Electro-mechanical parameters of the piezoceramic transducers are determined basing on
the technical data given in [8]. The equivalent Young modulus of the actuator and sensor
patches are calculated applying the mixture rule for the piezoceramic PZT material with E, =
6.3x10'® N/m? and the resin covering with E, = 2.8x10° N/m?. The piezoelectric coefficient
d3; refers to the linear estimation of the strain-voltage characteristic of the piezoceramic
devices for voltage amplitudes less then 60 V. The electro-mechanical parameters used in
calculation are listed in Table 1.

To obtain free vibrations the beam

Table 1. Material parameters of transducers end is subjected to an impulse

Material Jro— Sensor excitation. The beam response is
calculated at the measure point (x =

et Qe sl 268 mm) according to Eq. (19)

0 (kg/m3) 5780 6900 derived for the simplified model. For
comparison of the simulation and

E (N/m?) 3.3x1019 2.5x10° experimental results the impulse
dsy; (m/V) or (C/N) 2.3x10-10 2.5x10-10 value is determined by matching the
C (uF) 0.06 0.10 beginning response amplitudes with

the initial displacement of the tested
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beam. The results of simulation obtained for the uncontrolled system and for several values of
the gain factor k; = 0.135 s (x=10), ks = 0.203 s (x = 15), ks = 0.338 s (x = 25), are presented
in Fig. 7. As mentioned above, the passive damping refers to Voigt-Kelvin model with the
retardation time u = 1.88x10™* s which quite well describes the energy dissipation of the tested
beam (compare Fig. 7 with Fig. 3). For the actively damped beam the effect of the gain factor
increasing is evident. Comparing the results of the simulation with the free vibration plots
obtained experimentally, it can be noticed that the active damping effect is generally similar
but it is stronger for the theoretical evaluation. The reason for this behavior is the applied
simple model of the system with the additional stiffness of the activated segment neglected
and the perfect bonding assumed.
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Fig. 7. Impulse response of the beam without and with active damping.
Effects of passive damping and variation in the control gain.

5. Final remarks

The active damping technique using piezoceramic sensors and actuators was demonstrated
by the experiment and described theoretically. The investigation was focused on a
suppression of low frequency vibrations of the cantilever beam. The experimental results of
free vibrations confirmed that even a simple analog feedback with the derivative controller is
effective for the active damping of the beam transverse motion. Increasing the gain of the
control circuit can significantly increase the rate of the vibration reduction. In practice, the
gain values are limited because of the tendency of the control system to amplify unwanted
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high vibration components. The simulation results showed a quite good agreement with the
experiment even for the simplified model of the controlled beam. The model quality can be
improved by taking into account the local stiffening of the activated beam and by considering
the dynamic model of interaction between the actuator and the beam.
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