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The nonlinear response of two-degree-of-freedom vibratory beam-pendulum system in the
neighbourhood internal and external resonances is investigated. The analysis was realised in the
wide aspects of the influence of different kinds of nonlinearities, dampings and excitations. The
equations of motion have bean solved numerically. The present paper is a continuation of the au-
thor's previous works, where it was shown that in this type system one mode of vibration may excite
or damp another one, and that except different kinds of periodic vibration there may also appear cha-
otic vibration. To prove the character of this vibration and to realise the analysis of transitions from
periodic regular motion to quasi-periodic and chaotic, there have been constructed the bifurcation
diagrams and time histories, phase plane portraits, power spectral densities, Poincaré maps and ex-
ponents of Lyapunov. These bifurcation diagrams show many sudden qualitative changes, that is,
many bifurcations in the chaotic attractor as well as in the periodic orbits.
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1. Introduction

In this work the nonlinear dynamics of a two-degree-of-freedom beam-pendulum sys-
tem is studied. Dynamically systems with elements of the mathematical or physical pen-
dulum type have important applications. If the pendulum is suspended to the cantilever
beam, in this system may occur the autoparametric excitation as a result of inertial cou-
pling. In the systems of this type may occur the internal resonance of a parametric type.
Fundamental is the influence of different types of nonlinearities on conditions of mtemal
or external resonances.

The present paper is a continuation of the author previous works [1,2,3,4]. The equa-
tions of the autoparametric system have coupled nonlinearities and in this type systems
can occurs except steady-state, also chaotic vibrations. It depends on various amplitudes
of excitation, frequencies ratio and different parameters of the systems, for example vari-
ous coefficients of the damping presented by author in [1].
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A number of research have been discussed the complicated motion that may occur
chaos in nonlinear mechanical systems with external excitation. A typical example of the
governing equation is Duffing's equation with damping and harmonic or parametrically
excited systems were presented by Moon [5]; Bajaj and Johnson [6]; Bajaj and Tousi [7];
Szemplifiska-Stupnicka, [8,9]. Chaos in a nonlinear single-degree-of-freedom, parametri-
cally excited system was observed by Szemplinska-Stupnicka at all [10]. There the exci-
tation appears as a coefficient in the equation of motion (similarly as in the autoparamet-
ric systems).

Chaos for two degree-of-freedom autoparametric system was investigated by Hatwall
at all [11]. Those authors used the harmonic balance method showed that for higher exci-
tation levels, the response was found to be chaotic. This system was next investigated,
using the averaging analysis, by Bajaj at all [12] and by Benerjee at all [13]. Those au-
thors showed bifurcation analysis and Poincaré maps of the period and chaotic solution
for different various detuning of frequency. There was assumed that system is weakly
nonlinear. The analysis of transitions from periodic regular motion to chaotic motion for
two degree-of-freedom systems were presented by Gonzales at all [14] or by Pust and
Sz6116s [15], and for autoparametric system by Mustafa and Ertas [16], by Tondl [17] or
by Verhulst [18].

In the present paper the analysis was realised in the wide aspects of the influence of
different kinds of nonlinearities, dampings and excitations. Except the Duffing type
nonlinearity and the geometric nonlinearity as a result of the existence of the pendulum in
the system, also the geometric nonlinearity as a result of large flexural deflections of the
beam were taken into account. It was shown that in this type system one mode of vibra-
tions may excite or damp another mode, and that except different kinds periodic vibra-
tions may appear also chaotic vibration [1]. For characterising the previous discovered
strange chaotic attractor, where the effect of small damping acting on the beam or on the
pendulum for large flexural deflections of the beam, partially was demonstrated previous
by author [2-4] time histories, phase plane portraits, power spectral densities, Poincaré
maps and exponents of Lyapunov. In this work also the bifurcation diagrams for different
damping parameters are constructed. When a bifurcation diagram is plotted, several phe-
nomena can be observed: existence of a simple attractor with low period, or existence of
a chaotic attractor, and various bifurcations [19]. All these phenomena have to be verified
in the phase space. So in the present paper the time histories, phase plane portraits, power
spectral densities, the Poincaré maps and exponents of Lyapunov also are constructed.

2. System description and equation of motion

The investigated system is shown in Fig.1. The system consists of a weightless beam of
length 1 and stiffness EL. A body of mass m; is attached at the end of the beam. A pendu-
lum of the length /; and mass m, hangs down from the body of mass m,. It is admitted
that a linear viscous damping force acts upon the body m; and a proportional to angular
velocity damping force applied in the hinge opposes the motion of the pendulum. The
body of mass m1 subjected to harmonic vertical excitation (F=Focos7r). This system has
two degrees of freedom: the vertical displacement y and the angle n. The relation be-
tween the horizontal displacement or vertical spring force and vertical displacements of
the beam, also expression of the kinetic and the potential energy, the equations of motion
were presented by author in [1]. As generalised coordinates are assumed the vertical dis-
placement y of the body of mass m; measured from the equilibrium position and the angle
¢ of deflection of the body of mass m, measured from the vertical line.
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Figure 1 Schematic diagram of system
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The equations of motion for the dimensionless time and for the dimensionless pa-

rameters are in form
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3. Numerical results

Equations (1) were solved numerically by using the Runge-Kutta procedure. Near the
internal and external resonances depending on a selection of physical system parameters
the amplitudes of vibrations of both coupled bodies may be related differently, motions:
y1 and pendulum are periodic or quasiperiodic vibrations, but sometimes the motions of
the beam and pendulum are chaotic. For characterising a irregular chaotic response forms
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a transition zone between one and another type of regular steady resonant motion, in the
present paper the bifurcation diagrams for different damping parameters are constructed.
Exemplary results, for small damping put on pendulum, near internal and external reso-
nances (near principal autoparametric resonance for £=0.51 and near external resonance
for 4=1), are presented in Figs 2-5, where are showed displacements and velocities of the
beam end of the pendulum versus amplitude of excitation (scale A is compact). These
diagrams are presented for different values of frequency £ : in Fig.2 for. £=0.45, in Fig.3
for £=0.5, in Fig.4 for £=0.51 end in Fig.5 for £=0.52.
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Figure 2 Bifurcation diagram for y and ¢ for £=0.45 and: b,=0.2; a,=0.2; 24=0.5955; b,=1: m;=0.99

As can we seen from diagrams presented in Fig.2 in this case (£=0.45) for small value
of the excitation amplitude A (4<0.00028) both motions beam and pendulum are peri-
odic, but for greater value of parameter A character these motions may be irregular.
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Figure 3 Bifurcation diagram for y and ¢ for £=0.5 and: b;=0.2; 2,=0.2; %4=0.5955; b,=1: 14=0.99

As can be seen from diagram presented in Fig.3 for parameter =0.5 periodic motions
are for value of amplitude of excited A<0.00005, and for greater value of parameter A the
motion of the beam and of the pendulum have different character: may be periodic, qua-
siperiodic or irregular.

As can be seen from Fig.4 (£#=0.51) and from Fig.5 (£=0.52), in this case for greater
value of frequency parameter the range of value of the parameter A when the motions of
the beam and pendulum are periodic is longer. (4<0.0001 for £=0.51 and A< 0.00017 for
[=0.52) and for greater value of parameter A the motion of the beam and of the pendu-
lum have different character: may be periodic, quasiperiodic or irregular.
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Figure 4 Bifurcation diagram for y and ¢ for £=0.51 and: b;=0.2; a;=0.2; ¢=0.5955; by=1: #7=0.99
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Figure 5 Bifurcation diagram y for different values of £=0.52 and: £=0.2; a;=0.2; 21=0.5955; b,=1: 14,=0.99

As it can be seen from Figs 2-5 even small change of the frequency ratio (parameter
P gives different character of the beam and pendulum motions for the some values of
amplitude excitation (parameter A). As can we seen from these bifurcation diagrams sev-
eral phenomena can be observed: existence of a simple attractor with low period, or exis-
tence of a chaotic attractor, and various bifurcations. These phenomena can be observed
sometimes better for displacement, sometimes for velocities, so next diagrams are pre-
sented for both in tension scale for small damping put on the beam, on the pendulum or
together. In Fig.6 are presented these bifurcation diagrams for small damping put on the
beam.
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Figure 6 Bifurcation diagrams y; and ¢ for damping put on the beam (£=0.51; 5;=0.2; a;=0.2; 1=0.5955;
b2=13 /l1=099)

The bifurcation diagrams for small damping put on the pendulum are presented in
Fig. 7. Next, the some bifurcation diagrams for small damping put on the beam and on
the pendulum together are presented in Fig. 8.

Even small change the damping parameter of the system gives different character of
the beam and pendulum motion. As can be seen from these bifurcation diagrams, several
phenomena can be observed existence of a simple or chaotic attractor, and various bifur-
cations. All these phenomena have to be verified in the phase space. Next than the time
histories, phase plane portraits (Poincaré maps), power spectral densities (their fast Fou-
rier transform -FFT), and the exponents of Lyapunov are constructed. This descriptors are
available to observe chaos, and to better understand it.
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Figure 7 Bifurcation diagrams y; and ¢ for damping put on the pendulum (3=0.51; b1=02; a;=0.2;
0=0.5955; by=1: 14;=0.99)

Exemplary results chaotic motions are presented in Fig. 9 (time histories, power spectra
densities (FFT), Poincaré maps and the maximum exponents of Lyapunov corresponding
to coordinate Y, as well as to coordinate ¢).

As can be seen from Fig. 9 this response is chaotic. We see that in this case the mo-.
tion looks like irregular, the Poincar¢ maps trace the strange attractors, the frequency
spectrums are continuous and the largest exponents of Lyapunov are positive.
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dy\dt

Figure 8 Bifurcation diagrams y; and ¢ for damping put on the beam and on the pendulum together (£=0.51
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Figure 9 Time history, power spectral density (FFT), Poincaré map and maximum Lyapunov exponents corre-
sponding to coordinate y;(a — d) and to coordinate ¢(e — h) for: £=0.52; %=0.5955, a,=0.2; b1=0.2; b,=1; y=1;
1:=0.001205; A=0.0006

4. Conclusion

Influence of parameters on the behaviour of the autoparametric beam-pendulum sys-
tem near the internal and external resonances frequencies is very interesting and impor-
tant. In autoparametric system the energy is transferred from one degree of freedom to
the other. Depending on a selection of physical system parameters the amplitudes of vi-
brations of both coupled bodies may be related differently. It was shown that except dif-
ferent kinds periodic vibrations might appear also different kinds irregular vibrations.
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Nonperiodic attractors are traced by solving an initial value problem. The maximum
Lyapunov exponents have been calculated in order to characterise the chaotic orbits.
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