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An analysis is presented is to study the heat and mass transfer characteristics of natural
convection flow about a truncated cone embedded in a saturated porous medium with
uniform surface temperature/concentration under the combined buoyancy effects ther-
mal and mass diffusion. The transformed governing equations are solved by Keller box
method. Numerical results for dimensionless temperature and concentration; the local
Nuss elt (Sherwood) numbers are presented over a wide range of dimensionless distance
£, Lewis number Le, buoyancy ratio N and the wall to ambient viscosity ratio v*. It
has been found that the local Nusselt number and Sherwood number decrease with de-
creasing the wall to ambient viscosity ratio v*. Furthermore, it is shown that the local
Nusselt (Sherwood) numbers of the truncated cone approach those of inclined plate (full
cone) for the case of constant viscosity at £ = 0 (£ — oo).
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1. Introduction

Coupled heat and mass transfer (or double diffusion) driven by buoyancy due to
temperature and concentration variations in a saturated porous medium, has sev-
eral important applications in geothermal and geophysical engineering, e.g., the
migration of moisture in fibrous insulation and the underground disposal of nu-
clear wastes. Comprehensive review of this phenomenon has been reported by
Trevisanand and Bejan [1] for various geometries. Bejan and Khair [2] investigated
the vertical natural convection boundary layer flow in a saturated porous medium
due to the combined heat and mass transfer. Singh and Quenny (3] used the inte-
gral method to solve the problem of Bejan and Khair. Lai et al. [4] investigated
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the coupled heat and mass transfer by natural convection from slender bodies of
revolution in porous media. Yih [5] studied coupled heat and mass transfer by free
convection over a truncated cone in porous media in the cases: with variable wall
temperature/concentration or heat/mass flux. In most of the previous studies on
heat transfer in saturated porous media, the thermophysical properties of fluid were
assumed to be constant. However, it is known that these properties may change with
temperature, especially for fluid viscosity. To accurately predict the heat transfer
rate, it is necessary to take into account this variation of viscosity. In spite of its
importance in many applications, this effect has received rather little attention. Pre-
vious results [6-9] have shown that the variable viscosity has a significant effect on
thermal and momentum transport predictions. Blythe and Simpkins [10] applied an
integral method to examine the natural convection in a two-dimensional cavity filled
with fluid-saturated porous media for the case in which the viscosity is temperature
dependent. Ramrez and Saez [11] studied the forced convection boundary layer
flow in a saturated porous medium containing a fluid with temperature-dependent
viscosity on mixed convection boundary layer flow around a vertical surface on a
saturated porous medium. The aim of the present work is to study the variable
viscosity effects on a heat and mass transfer characteristics in natural convection
flow over a truncated cone subject to uniform wall temperature/concentration em-
bedded in porous media under the coupled heat and mass diffusion. Nonsimilar
solutions are obtained for uniform wall temperature/concentration (UWT/UWC).

2. Analysis

Consider the problem of combined heat and mass transfer by free convection flow
over a truncated cone (with half angle ) embedded in a saturated porous medium.
We consider the condition at the surface, namely, uniform wall temperature/concen-
tration (UWT/UWC). The physical model and coordinate system are shown in Fig.
1. The origin of the coordinate system is placed at the vertex of the full cone, where
z is the coordinate along the surface of cone measured from the origin and y is the
coordinate normal to the surface, respectively. The flow is steady and the fluid prop-
erties are assumed to be constant except for the density p variation in the buoyancy
force term and the dynamic viscosity u variation with temperature. Introducing
the boundary layer and Boussinesq approximations, the governing equations based
on the Darcy law can be written as follows:
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Figure 1 Flow model and physical coordinate system

The boundary conditions are defined as follows:

v=0 T=T, c¢c=c¢y, aty=0
u=0 T=Tx c=cCx aty— oo

(5)

where u and v are Darcy velocities in the z and y directions, ps, is the density
of the ambient fluid, g is the gravitational acceleration, K is permeability of the
porous medium, S, is the concentration expansion coefficient, S is the thermal
expansion coefficient of the fluid, T" and ¢ are the temperature and concentration,
respectively, and r = zsiny. Equations (1)-(5) are valid in zo < = < oo, where
zg is the distance of the leading edge of truncated cone measured from the origin.
Following [13] the variation of dynamic viscosity with the temperature is written in

the form: i
B = Hoo )
S(T) = (v*)° = exp [A(T - Two)] } (6)

where pio is the absolute viscosity at the ambient temperature and therefore S(T, =
1, v* = vy /Veo = exp [A(T — Teo) is the wall to ambient viscosity ratio parameter.
Under the following dimensionless variables:

*
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0(¢,m) = T T (10)
€ —Cas
clen) = 2=, (1)
Egs. (1)-(4) are transformed into:

" _ (v.)—a o + N(vt)—ﬂ C' —In (v*)—a f’0’, (12)
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with the boundary conditions are transformed into:

f=0 8=1 C=1 atn=0 (15)
f’zO =0 C=0 atn — oo '
The Darcian velocities are given by:
- aRaz* ’ )
= (16)
__oV/Fag g2
o= (ke va) gt -] i
The local Nusselt number Nu,-, the local Sherwood number Sh,. are given by:
T =00, (19)
zt
Shg-
;.7 =-C &0, (19)

where the primes denote the differentiation with respect to n and

- ﬁc(c — Coo)
s JBT(Tw = Too)

is the buoyancy ratio measuring the relative effect of buoyancy force between mass
and thermal diffusion for UWT/UWC. It is clear that N is zero for pure thermal
buoyancy induced flow, positive for assisting flow (both thermal buoyancy force
and buoyancy force owing to concentration difference act in the same direction)
and negative for opposing flow. v* takes the values 0.1-10, for the case v* = 1 the
equations reduce to the two- dimensional base flow equations for constant viscosity
evaluated at the ambient temperature; v* < 1 corresponds to the case of liquid
heating and v* > 1 corresponds to the case of gas heating [13]. It is interesting
to mention that for the case of N = 0 at v* = 1, equations (12)—(14) are reduced
to those of Cheng et al. [14]. For the case of £ = v* = 0, equations (12)—(14) are
reduced to those of vertical plate [2], where the similarity solutions are obtained.
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For the case of £ — oo, equations (12)—(14) are reduced to the case of a full cone
and the similarity solutions are obtained, since:

We now obtain approximate solutions of equations (12)—(14) based on local similar-
ity and non-similarity methods [15]. For the first level of truncation the £ derivatives
in equations (13), (14) can be neglected. Thus, the governing equations for the first
level of the truncation are equation (12) and the following ones:

" §

o+(1+£ )fo' 0, (20)
1 {4 é’ /3
=0 +(1+§ 2)fc =0, (21)

which subject to the boundary conditions:

f=0 6=1 C=1 atp=0 }

F=6 B=0 O sty-seo (22)

At the second level of truncation, we introduce x = 3£ D= 5;(:, and Q = «5—~
and restore all the neglected terms in the first level of truncation thus, we have
equation (12) and the following:

/4 6 73 !

91+(1+£ )fﬂ' E(f'le-60'x), (23)
1 74 6 ? f '3
= +(1+€ 2)fc £(F'Q - C), (24)

which subject to the boundary conditions:

f=0, 8=1, C=1 atn=0;
f'=0a =0, C=0 atn—oo.
The introduction of the three new dependent variables x, §} and @ in the prob-

lem requires three equations with appropriate boundary conditions. This can be
obtained by differentiating (12), (23), (24) with respect to £ and neglecting the

terms %%{, %%g and %%%‘-, which leads to:
X'= (@)Y -In(@)Q@) ¢+ N () ¥+
~In(v*)® (v*)"” —In (v*) (f'€'9")

(25)

(26)

g"+(-1.%+ 2) (x0'+ ) + )2f0’ E(XQ—-%) +(FQ-6'x) (27)

1+ 5
fO'=€(x@-9'x) + (e -0x) (28)

" + (15& )(x0’+f<I>')+

with boundary conditions:

X(gvo) =0, Q(E,O) =0, ®¢0)=0 atn=0 (29)
X’(f,()):(), ﬂ(f,oo)=0, ®(§,00)=0 atnp—oo [~

(1+¢)?
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3. Numerical Results and Discussion

The resulting equations with the boundary conditions have been solved numerically
using a very efficient implicit finite difference method known as the modified Keller-
box scheme [15]. Numerical results for the temperature, concentration, local Nusselt
number and local Sherwood number are presented for the Lewis number Le ranging
from 1 to 10, buoyancy ratio N ranging from 0.5 to 4 and v* ranging from 0.2 to 5.

In order to verify the accuracy of our computer simulation model, we have
compared our results with those of Bejan and Khair [2], Sighn and Queeny [3] and
Yih [5]. The comparisons in the above cases are found to be in good agreement, as
shown in Tables 1-3.

Table 1 Comparison of values of —8'(£,0) with N =0 (UWT/UWC).

Table 2 Comparison of values of —6’(£,0) for various values of N and Le (UWT/UWC).

- =1 - v=02 v*=5
€ | Yih [5] present results

0 | 0.4439 0.4439 0.81544  0.2552

0.5 | 0.5285 0.5413 0.9951 0.3100
1 0.5807 0.5951 1.1011 0.3416

2 0.6373 0.6573 1.2078 0.3756

6 0.7123 0.7220 1.3266 0.4130

10 | 0.7330 0.7391 1.3501 0.4228
20 | 0.7500 0.7533 1.3840  0.4309
40 | 0.7952 0.7608 1.3978 0.4351
oo | 0.7686 0.7686 1.4122 0.4396

— =1 — =02 ov*=5
N Le Bejan Singh present
and Khair [2] and Queeny [3] Yih [5] results
4 1 0.992 0.955 0.9923 0.9924  1.8231 0.5675
10 0.681 0.634 0.6810 0.6810 1.3071 0.3727
1 1 0.628 0.604 0.6276 0.6276 1.1531 0.3591
10 0.521 0.495 0.5215 0.5215 0.9745 0.2043
0 1 0.444 - 04439  0.4439 0.8154 0.2552
10 0.444 - 04439  0.4439 0.8154  0.2522

Table 3 Comparison of values of —C’(¢,0) for various values of N and Le (UWT/UWC).

— v'=1 - v =02 v*=5
N Le Bejan Singh present
and Khair [2] and Queeny [3] Yih [5] results
4 1 0.992 0.955 0.9923 0.9924 1.8231 0.5675
10 3.290 3.168 3.2807  3.2897 7.0114 0.5686
1 1 0.628 0.604 0.6276  0.6276 1.1531 0.3591
10 2.202 2.215 22021  2.2021 4.6551 1.0643
0 1 0.444 = 0.4439 0.4439 0.81544  0.2552
10 1.680 = 1.6802 1.6803 3.5229 0.8225
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v=02,1,5

Figure 3 Temperature distribution for N = 4, Le = 1, 10, v* = 0.2, 1, 5 in the case UWT/UWC

Figures 2 and 3 show that the dimensionless temperature profiles for the various
values of the Lewis number, buoyancy ratio N and v* for UWT/UWC. From these
figures we can find that the dimensionless temperature profiles decrease as buoyancy
ratio increases for a fixed value of Le and v*. It is also observed that as the Lewis
number Le increases form 1 to 10, the thermal boundary layer thickness increases
(decreases) for a positive (negative) buoyancy ratio. For a fixed value of Lewis
number and N, the dimensionless temperature increases as v* increases.
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v'=0.215

Figure 4 Concentration distribution for N = —0.5, Le = 1, 10, v* = 0.2, 1, 5 in the case
UWT/UWC

Figure 5 Concentration distribution for N = 4, Le = 1, 10, v* = 0.2, 1, 5 in the case UWT/UWC

Figures 4 and 5 present dimensionless concentration profiles for the various val-
ues of Le, N, and, v* with UWT/UWC. It is also found that dimensionless concen-
tration profiles, like the dimensionless temperature profiles, decrease monotonically
from the surface to the ambient. The concentration boundary layer thickness de-
creases as buoyancy ratio increases. It is also seen that as the Lewis number Le
increases from 1 to 10, the concentration boundary layer decreases, at a fixed value
of N and Le, the concentration increases as v* increases.

Figure 6 displays the local Nusselt number for various values of v* with UWT/
UWC. It is shown that increasing the value of dimensionless distance £ increases
the local Nusselt number. This is because the increase in the value of £ implies the
increase of the buoyancy force which tends to accelerate the flow. It is also observed
that the local Nusselt number approaches to constant value when £ is small and
large. We observe that the Nusselt number decreases as v* increases. Figure 7
illustrates the local Sherwood number for various values of v* with UWT/UWC.
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Figure 6 Local Nusselt number distribution for N = 2, Le = 5, v* = 0.2, 1, 5 in the case
UWT/UWC

The local Sherwood number becomes almost constant for small and large £. Also,
the local Sherwood number decreases as v* increases.

7r v'=0.2

0.01 0.1 1 10 100 1000

Figure 7 Local Sherwood number distribution for N = 2, Le = 5, v* = 0.2, 1, 5 in the case
UWT/UWC

4. Conclusions

A boundary layer analysis is presented to study the effect of variable viscosity on
natural convection flow in a saturated porous medium resulting from combined heat
and mass buoyancy effects adjacent to a truncated cone maintained at uniform
wall temperature/concentration (UWT/UWC). Numerical solutions are obtained
for different values of dimensionless distance £ buoyancy ratio N, Lewis number
Le and wall to ambient ratio v*. The decay of the dimensionless temperature and
concentration profiles has been observed. It is shown that for the increase in the
value of N and £ both the heat and mass transfer increase. It is also found that
increasing the wall to ambient ratio parameter decreases the local Nusselt number
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and Sherwood number. The present results predict that variable viscosity and
concentration profiles as well as the Nusselt (Sherwood) numbers.
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Table 4 Nomenclature

concentration

dimensionless concentration
mass diffusivity

dimensionless stream function
gravitational acceleration

local heat transfer coefficient
permeability of the porous media

" thermal conductivity

Lewis number, a/D

buoyancy ratio for UWT/UWC

local Nusselt number, hz*/k

modified local Rayleigh number, poog cos YA (Tw — T ) Ke* [(lico )
local radius of truncated cone

local Sherwood number, mz* /D{cw — €oo)

temperature

velocity component in z-direction

velocity component in y-direction

streamwise coordinate

distance measured from the leading edge of the truncated cone, z — o
distance of the leading edge of the truncated cone measure from the origin
transverse coordinate

density of the ambient fluid

thermal diffusivity

stream function

dynamic viscosity

dimensionless temperature

pseudo-similarity variable

half angle of the truncated cone

dimensionless distance

condition at the wall

condition at infinity
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