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Admissible static and dynamical problems are investigated for a cusped plate. The
setting of boundary conditions at the plates ends depends on the geometry of sharpenings
of plates ends, while the setting of initial conditions is independent of them. Interaction
problem between an elastic cusped plate and viscous incompressible fluid is studied.
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1. Introduction

In 1955 I.Vekua [22]— [24] raised the problem of investigation of cusped plates,
i.e. such ones whose thickness on the part of plate boundary or on the whole one
vanishes. The problem mathematically leads to the question of setting and solving
of boundary value problems (BVP) for even order equations and systems of elliptic
type with the order degeneration in the statical case and of initial boundary value
problems (IBVP) for even order equations and systems of hyperbolic type with the
order degeneration in the dynamical case. There exists a wide literature devoted to
the theory of degenerate and mixed type equations (see, e.g., [2,7,18]), which was
developed intensively in the period from early 50-ies till early 70-ies but it could
not cover the above equations and systems because of distinct peculiarities of the
latters caused by the geometry of the mechanical problem.

The first work concerning classical bending of cusped elastic plates was done
by S. Mikhlin [16] and Makhover [14,15]. Since, a lot of sciences were investigated
cusped plates and shells, see, e.g., [4,5,9,10]. A brief survey of results and references
can be found in [11]. In the last period various authors dedicated their work to solid-
fluid interaction problems and to applications of such problems to the engineering.

The aim of the present paper is to consider interaction between an elastic cusped
plate and fluid. We will consider a plate, whose projection on x3 = 0 occupies the
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domain €
Q= {(z1,22,23): —c0< T <00, 0<z3<!, 3= 0}.
The equation of bending vibration has the following form (see, e.g., [20])

O?w(xy,t)
otz ’
where w(z2) is a deflection of the plate, g(z3) is an intensity of a lateral load, p is
a density of the shell, D(z3) is a flexural rigidity,
2Eh3 (.122)
3(1—wv2)’

(D(z2)w, 22 (x2,1)) , 20 = q(z2,t) — 2ph(x2) O<zy<l, (1)

D(zs) := (2)

where E is the Young’s modules, v is the Poison’s ratio, and 2h(z2) is the thickness
of the shell. Let E =const, v =const, and

D(z2) = Dox§ (I — .’L'z)ﬂ, Dy, o, B =const, Dg>0, a,B>0. (3)
Then
2h(z2) = hoxg/g’(l —22)P/3, ho = const > 0.

In the case a®+3? > 0 equation (1) becomes degenerate one. Such plates are called
cusped plates.

In the case under consideration (see [20]) "

M2($2, t) = —D(l‘z)’w,gg (CEQ,t), (4)
Q2(m2’t) = M2,2($2)t)7 (5)
where M3 (z2,t) is a bending moment, Q2 (x2,t) is an intersecting force.
Section 2 is devoted to the investigation of properties of solution of the equation
(1) and formulation of all admissible BVPs for harmonic vibration of cusped elastic

plates.
Section 3 deals with incompressible fluid — elastic plates interactions problems.

2. Harmonic Vibration of an Elastic Cusped Plates

In case of cylindrical bending (1), (4) and (5) becomes

(D(x2)w, 22 (x2)),22 = g(z2), O0<mxy<l, (6)
Ms(z2) = —D(z2)w,22, Q2(72) = Ma, (z2). (7)

Obviously, if we suppose g(z2) € C([0,1]) we have

T2

Ohlms)= = / 9(©)dt — c1, (®)
My(wy) = - / (22 — £)g(€)dE — 1z — oo, (9)

0
2
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T2 £
wyg (T2) =/ - /nq(n)dn+c2
3
" / amdn+ e | D7NE) b de + e, (10)
o 3
i / (@2-8)4 |- / na(m)dn + ¢
13

€ / omdn+ e | DNE) b de

0
2

+c3xg +cq, 29 €]0,1]. (11)

Z

At points 0, [ al] above quantities are defined as the corresponding limits when
zog — 0y and 2o — [_.

Remark 2.1 Since q(z2) € C([0,1]), according to (8)-(11), we obtain w(-,t) €
C*4(]0,1]), and

Q2('7t), MZ("t) € C([Ovl])v
w('at)? W,2 ('7t) € C(]O,l[),

the behaviour of the w,o (z2) and w(za) when x5 — 04 and z2 — [_ depends on a
and B, as follows:

we CH[0,1)) (weCH(0,]])) if a<l, B>1(a>1,B<1)
we C([0,1) (weC0,]) if a<2,>2(a>2 B<2)
w € C([0,1]) if o, B<1;
w € C([0,1)) if « B8<2;

w e CY([0,1)) N C([0,1]), (we CH(0,]])N c([o,1)))
if a<l, f<2(a<?2 <)

Taking into account of above remark, we have following problems

Problem 1 Let 0 < o< 1,0 < 3 < 1. Find w € C4(]0,1[) N C([0,1]) satisfying
(1) and the following boundary conditions (BCs):

w(0) = g11, w,2(0) = g21, w(l) =g12, w2 (l) = goo;

Problem 2 Let 0 < o < 1, 0 < B < 1. Find w € C*(]0,1]) N C([0,1]) satisfying
(1) and BCs:

w(0) = g11, w,2(0) = g21, w,2 (1) = gaz2, Q2(1) = hag;
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Problem 3 Let0<a <1, 0<p<2. Findwe C4]0,I[)NnC*([0,!])nC([0,1])
satisfying (1) and BCs:

w(0) = g11, w,2(0) = ga1, w(l) =g12, Ma(l) = hia;

Problem 4 Let 0 < a < 1, 3> 0. Find w € C*(]0,1[) N C*([0,1]) satisfying (1)
and the following BCs:

w(0) = g11, w,2(0) = g21, Ma(l) = h12, Q2() = hag;

Problem 5 Let 0 < o, 3 < 1. Find w € C*(]0,1[) N C*([0,1]) satisfying (1) and
the following BCs:

W2 (0) = ga1 @2(0) = ha1, w(l) = g12, w2 (I) = go2;

Problem 6 Let 0 < a < 1,0 < 8 < 2. Find w € C*(]0,1[) N C*([0,1[) n C([0,1])
satisfying (1) and the following BCs:

w2 (0) = g21, Q2(0) = ho1, w(l) = g12, Ma(l) = hi2;

Problem 7 Let 0 < o< 2, 0< < 1. Findw € C*(]0,1[) nC*(]0,1]) nC([0,1])
satisfying (1) and the following BCs:

w(o) = 911, MZ(O) = h117 U}(l) = g12, W,2 (l) = g22;

Problem 8 Let 0 < a < 2,0 < 8 < 1. Find w € C*(]0,1[) n C([0,1]) N C*(]0,1])
satisfying (1) and the following BCs:

w(0) = g11, M2(0) = h11, w2 (1) = ga2, Q2(l) = hag;

Problem 9 Let 0 < a, 8 < 2. Findw € C*(]0,1[)NC([0,1]) satisfying (1) and the
following BCs:

w(0) = g11, M2(0) = h1x w(l) = g12, Ma(l) = h1o;

Problem 10 Leta >0, 0<8< 1. Findw e C*(]0,1[) N C*(]0,1]) satisfying (1)
and the following BCs:

M5(0) = h11, Q2(0) = hoz w(l) = g12, w2 (I) = ga2-

In all these problems g; j, hi; (i,j = 1,2) are given constants.
All the above problems are solved in the explicit forms.

Remark 2.2 Problems 1-10 are not correct for the different values of o and (8
indicated in Problems 1-10. It is evident from the fact that in the above cases, in
general, the limits of w and w,s as 3 — 04, I_ do not exist. The last assertions
easily follow from the general representations (11) of w and w,2 with (10).

In case of homogeneous BCs solution of all the above problems can be repre-
sented as follows [6]

l
sl zg) = / K (22, £)g(€)de, (12)
0
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where
reo={ o L5 @

Kj3(zq,&) has different forms for different problems, e.g.,
Problem 1.

Z2

Ka(2,€) = / (n— 2)(n — D~ (m)dn
0

z2

¢
+ { / D™ 'dn / (z2 — m)nD ™ (n)dn
0
nD~*(n)dn

+jn(§— dn/wz— ~Hn)d }—A—
0 0

O

f [ D=1
/ (€ —m)nD ™ (n)dn / zz =D~ (m)dn*——Fx——
0 0
l
€ o2 J D~ (n)dn
+ [te-mD tdn [@-nD i —F——. (9
1] 0

where
l

/ §)d£} / D™Y(¢)d¢ /l 2D~ (¢)de < 0.

0

A=

The last assertion follows from the Holder inequality which is strong since & D3 €3]
and D~ 3 (£) are positive on ]0,1[, and £2D~1(¢) and D~1(¢) differ from each other
by a nonconstant factor £2.

Problem 2.

T2

Hilagel] — / (22 — m)(€ —m)D~Ydn

¢
= /§ n)D~!

f(l —n)D=1(n)dn 0

o

x 0/ (22— ) D~ (n)dn. (15)
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Problem 3.

Ka(zs,6) = / (22— 1)(€ — m) D~ (n)dn
0

= m—— [ @ = - mpan

({(l —n)2D~*(n)dn 0

3
x / (€ =) - m)D (n)dn
0

Problem 4.

T2

Ka(z2,6) = / (€ —n)(&2 — ))D~Y(n)dn
0
Problem 5.

i
A / (22— 1)(€ — ) D~ (n)dn

l
U T / (22 — 1) D™ (n)dn

l
an (n)dn z

l
X / (¢ —n)D™(n)dn.
¢

Problem 6.
T2 T2
e d) = ={<am) / D~ (n)dn + / 72D (n)dn
£ 1
0
+ (=) / D(n)dn
£
Problem 7.

l
Ks(e,€) = / (w2 — n)(€ =)D~ (n)dn
§

- — - / (z2 —mnD~(n)dn

I n?*D=1(n)dnz.
0

(16)

(17)

(18)

(19)
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!
X / (€ = n)nD~*(n)dn. (20)
¢
Problem 8.
Ks(z2,8) = :vz/nD Y n)dn+/n DY (n)dn
¢
1
1 / (21)
g
Problem 9.
!
Kafen§) = T [a-mD i+ 2078 / — mD " (n)d
¢ ;
(=22)l=¢) _“l)z(l —9 / n*D~* (n)dn. (22)
0
Problem 10.
l
Ka(e2,§) = = [ (@2 = n)n - D (n)an (23)
¢

Obviously, taking into account (14)-(23), we have (see (13))

C([0,1] x [0,1]), in case of Problems 1—3,5—9;
(z2,€) € ¢ C(]0,1]x]0,1]), in case of Problems 10; (24)
C([0,1[x[0,1]), in case of Problems 4,

and

C([0,1] x [0,1]), in case of Problems 1, 2,5, 9;
K' 5 (z2,€) € { C(]0,1]x]0,1]), in case of Problems 7, 8, 10; (25)
C([0,1[x[0,1[), in case of Problems 3, 4, 6;

Let us consider equation (1) in the case of harmonic vibration. In this case

tq0($2)7 (26)

where w = const is an oscillation frequency, go(z2) € C([0,1]) is a given function.
Now, for wo(z2) from (1), we get the following equation

’LU(CL'2, t) = eiwtw()(x2)a q(x27t) = eiw

(D(z2)wg(z2))” = go(wz) + 2w?ph(zz)wo(z2), (27)
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which we solve under the above BVPs (see problems 1-10), where we replace w(zz)
and w'(z2) by wo(z2) and wy(z2) with

My(z2) = —D(z2)wo22, Q2(x2) = Ma, (z2).

All these problems are equivalent to the following integral equation (which we get
from (12) after replacing w(zz) and q(z2) by wo(z2) and go(z2) +2w?ph(z2)wo(z2)),
respectively

wo(e2) - / K (z2,€) 9(6) wo(€)de = F(aa), (28)
where g(§) := 2ph(z2)

l
Fiigs) 1= / K (2, €) qo(£)dé
0

Proposition 2.3 K(z2,£) is a symmetric with respect to 3 and §.

Proof. For z; and z5, such that 0 < z;, z9 <[ we have

_ K3(z2vzl)v 0< 2 <y <L,
b= = { K3(z1,22), 0< 21 <2<,
= K3(z1,22), 0< 2z <2<,
K(zz’21) B { K3(Z2’Zl)a 0 S 22 S 21 S l’

ie.,
K(z,22) = K(22,21), for any 21,2 € [0,1].

Introducing a new unknown function

wy(z2) = wo(r2)/g(x2) (29)

we can reduce (28) to the following integral equation

l
—w? / R(z2, &) w1 (€)dé = F(22)1/g(x2) (30)
0

where
.132, =g .T2 K .’Eg, \/ ) (31)

Obviously, (30) is an integral equatlon with a symmetric and continuous kernel.
Let us denote by A, eigenvalues of R(z2,£) corresponding to eigenfunction Yy,
ie.,

Yo (zg) = /R(mz, d€, (32)
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and let

X, = Yn(22) (33)

V9(z2)

Further, in view of (31) and (32) we have

l
Xo(2) = An / 9(6)K (22, €) X (€)dE. (34)
0

It is easy to prove the following propositions (see [6])
Proposition 2.4 Y, (z5) € C*(]0,1]).

Proposition 2.5 Let Y, (z2) € C*(]0,1[). Number of eigenvalues A, of (30) is not
finite.

Let recall the following well-known theorem (see [13])

Theorem 2.6 If u(xs) has the form

l
u(za) = A / Rz, €) f(€)d,
0

with f(z2) continuous on [0,1], and a symmetric kernel R(z2,€) € C([0,1] x [0,1]),
then

oo

u(@s) = Y _(u, Ya)Ya(z2), (35)

n=1

where ,
(u,Yy) := /u(xz)Yn(:cg)d:cz,
0
Y, is an eigenfunction of R(x2,&), and the series on the right hand side of (35) is
convergent absolutely and uniformly on [0,1].
Proposition 2.7 All A\, are positive.

If w? # Ay, the unique solution of (30) can be written as follows (see, e.g., [13],
Theorem XVIII, p.157)

wi(es) = Fla)Vs(a)
00 l
+ 'y {A s [FOVID YOk Valar),  (30)
n=1 Lo 0

where the series in the right hand side of (36) is absolutely and uniformly convergent
on [0,1].
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After substituting (29) and (36), into (33) we formally have

wo(z2) = F(x2)
55 l

+ Wy [ﬁ/F(S) V(&) Yn(ﬁ)dﬁ] Xon(x2)- (37)
n=1 0

We have to prove that (37) is a solution of (27) under BCs 1-10.
Let differentiate (37) formally i-times with respect to x5 and consider the fol-
lowing expressions

w(()i) (z2) = F® (z2)
= !
+u? Y [ — [FOVe® Yn(@d&} X0 (z2), (38)

An —w
0

i=1,..,4

Proposition 2.8 The series on the right hand side of (87) and (38) are absolutely
and uniformly convergent on |0,

Proof. Let denote by

l
Snlaa) i= 5 [ F(E) Va® Ya(€)deXn(o2).
0

Taking into account (34), (33) we have

l l

Su@) = 5 [ FOVE@ Ya(©de [ oK (aa ) Xn(n)dn
0 0
l l

= ,\n)flwz/F(ﬁ)\/g(ﬁ)Yn(f)dE/ 9(mK (z2,1)Yn(n)dn
0 0

l
= #/\/g(n)ff(wz,n)
0

X

1
( / F(&) Vo Yn(s)dé) Yo (n)d. (39)

0

According to Proposition 2.4, the number of eigenvalues is not finite, that means
Ap — 0o when n — oo, and further

An 1
An—w? 11— _g\f (40}
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By view of F(z3) := /K(mz,f) qo(§)dE, we get

l l
FOVI® = [ KenVa@amin= [ R o) 4 ()
0 0

va(n)
Then,
q"g(_?;) e C(0, 1), (42)

From (41) and (42) we obtain, that the following series

2 / £)deY, () (43)

is absolutely and uniformly convergent on ]0,].
Further, in view of (39)—(42) and (24) we get, that

> Salms) = >

l
An{"wz / VI K (z2,m)

b¢
/‘\
o
e
m
§
r~<

\_/
EZ
3

oo

- / Ve K (@) 3 12

0 n=1

l
x ( / F(€)v/9© Yn@)ds) Ya(n)dn (44)
0

is also absolutely and uniformly convergent on 0, [, i.e., wo(z2) € C(]0,]).
Analogously, we obtain

i i i - /\n
wP(z) = FO //—K()xg, DI
n=1""

x </F(s)\/g( Y(ads) W, i=1,.,4.  (45)

0

Because of ‘
Vam)ES) (z2,m) € C(10,1[x]0,1]),
we get F®) € C(0,1]) and w® € C(J0,1]),i=1,..,4. O
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Proposition 2.9 If

go(z2)

———=is a continuous function on [0, ], (46)
9(z2)
then

Cci([o,1)), in case of Problems 1, 2, 5;
CY([0,i) nC([0,]]), in case of Problems 3, 6;
C'(]0,1)) nC([0,1]), in case of Problems 7, 8;

wo(e2) € ([0, 1)), in case of Problem 9; (47)
c*(jo,1)), in case of Problem 10;
Cc*([o,1]), in case of Problem 4.

Proof. If we replace in (12) g(z2) by go(x2), we get the solution of Problems 1-10
for g(x2) replaced by go(x2). Therefore,

l
Flzg) = / K(22,€) qo(€)dé
0

C([0,1)), in case of Problems 1, 2, 5, 9;
CY([0,i) nC([0,1]), in case of Problems 3, 6;

€ C'()0,1)) nC([0,1]), in case of Problems 7, 8; (48)
Cc([o,1)), in case of Problem 10;
Cci(]o,1)), in case of Problem 4.

go(z2)
V9(z2)

(43) is absolutely and uniformly convergent on

Since is a continuous on [0,!], in view of (41) and theorem 2.6 series

10,7], in case of Problems 10;

[0,]], in case of Problems 1—3, 5—09;
I
[0,][, in case of Problems 4.

Therefore, taking into account (24), we obtain that the

oo
series (44) (i.e., an(xz)) is convergence absolutely and uniformly on

n=1

{ [
]
[

Analogously, from (25), we get that the series in the right hand side of (45) (for
i = 1) convergent absolutely and uniformly on

0,!], in case of Problems 1—3, 5—09;
0,{], in case of Problems 10; (49)
0,I[, in case of Problems 4.

, in case of Problems 7, 8, 10; (50)
, in case of Problems 3, 4, 6.

)

[0,]], in case of Problems 1, 2, 5:
10,1]
[0, 7]

2
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Since =
wo(z2) = F(x2) + W Z Sn(z2),
n=1

according to (48), (49), (50) we have (47). ¢

Similarly, we can prove that the following series

(D(@2)wp(22))? = (D(22)F"(22))®
l

2 - 1
= Y | O/ FE)Vg@Ya(€)de

X

(D(z2) X7 (22))V, i=1,2

are absolutely and uniformly convergent in [0, [].
So, if (46) is fulfilled, we have proved that the formal solution (37) is a solution
of (27) under BCs 1-10.

3. A Cusped Elastic Plate-Fluid Interaction Problem

Let us consider the problem of the interaction of a plate whose variable flexural
rigidity is given by the equation (2) and of a flow of the fluid.

Let the flow of the fluid be independent of x;, parallel to the plane Ozsx3, i.e.
v; = 0, and generating bending of the plate. Let at infinity, for pressure we have

p(T2,T3,t) = Poo(t), when |z| — oo, (51)
and let for the velocity components conditions at infinity be either
va(za, x3,t) = O(1), vs(x2,Z3,t) = V300(t), (52)
or
vj(z2,23,1) = O(1), j=2,3, (53)

where v := (v9,v3) is a velocity vector of the fluid, p(z2,z3,t) is a pressure, and
V300 (%), Poo(t) are given functions.

In what follows we suppose that the plate is so thin that, we can assume: the
fluid occupies the whole space R2 but the middle plane €2 of the plate.

Let,

I:={[0,1] x {0}},

Qf == {21,22,23 : 21 =0, T := (22,23) € R*\I},
va, vz € CHO)NC(t > 0).

Transmission conditions for v;(z2, 3,t) (j = 2,3) we can write in the following
form (see [12,19,25])

Ow(z2,t)

’1)3(.’172,0,t) = 6t

, T2 € [O,l], t>0. (54)
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In case of a viscous fluid we add to (54) transmission condition for vy (z2, 3,t)
v2(z2,0,t) =0, z3 €[0,I], t>0. (55)
Because of incompressibility we have
divu(zg, x3,t) =0, (z2,23) € Qf, t>0, (56)
and (see e.g., [8], p.5)

—pdjk + p (gv] + g:;k) , j,k=const =23, (57)
j

where o, x 1S a stress tensor, u is a coefficient of viscosity, d;5 is Kroneker delta. In

case of ideal fluid p = 0.
From (56) and (57) we obtain

0 , X3, t
03f3($27$3,t) = —p(.'L'z,LUg,t) +2l1'_?§£i22x—3)
T3
0 ,Z3,t
= —p(x2,3,1) — 2/1&(%3)- (58)
T2
In virtue of (58) and (55) yields
0d3(22,01,t) = —p(22,04,1).
Therefore, the transmission condition for p has the following form
—p(z2,04,1) + p(z2,0-,t) = q(x2,t), 2 €]0,]. (59)
In case of harmonic vibration, we have
U)(CL‘2, t) = 6iwtw0(x2)’ q(mQa t) = eiwth(m2)> (60)
p(x2,3,t) = e“tpo(xs, z3),
uz(x2, 3, t) = e ud(22, x3), u3(T2,73,t) = e“ul(zs, 23), (61)

V2 (.’132, I3, t) = iwe“"tvg (xz, 1’3) V3 (ZEQ, I3, t) = iwe“"tvg (.Tz, 1‘3)

_ piwt, 0 — i ptwt, 0 0 0 __
Poo(t) = €' Poo, U3oo(t) = iwe' 03, PO, V3o = coNSt,

where w = const > 0, va = ug¢, v3 = ugs (u; = 0, uz, us are components of the
displacement vector).

3.1. Case of an Ideal Fluid

In case of the potential motion of the flow there exists a complex function ® =
Y +ip € C?(Q) N CL(t > 0) such that

8¢(m27x3at) — 8¢($2,$3,t)
8.’L‘2 6903
6(,0(.1’2,.’1)3, t) 6¢($2, .’L‘3,t)

== = v3(x2, T3,1).
81'3 8332 3( 2, 3)

- 'U2(z27 zs3, t))
(62)
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The pressure is given by the formula

Po , O Op 1 5 o
MR il it (C R P (63)

2
Yoo

p(x2,23,t) = p -

where H is the class of Holder continuous functions.
w(z2, ) is given by the equation (1). Therefore, taking into account transmission
condition (59), we have

2h s
(25 (1 — 22)°w,22 (z2,1)) 22 = __(;zlwatt (z2,1) (64)
(+) (=)
—p| T2, h ((1,'2),t +P Z2, h (.’I?Q),t

+ Do

For ®,5 (22,%3,t) = —v3 + ivg, in view of (54) and (52), we get the following
expression (see [17])

1
; _7Ti\/($2+i$3)(.172+i1‘3—l)
V(& +iz3) (& + izs — 1)

(62 — x2) —ix3

b=

W, (52)t)d£2

T +ix3 — l/2
\/(IQ + iiI)g)(iEQ +izs —1) '

If we consider harmonic vibration, then taking into account (60) and (61) we
obtain

+U3oo (65)

p(x2,x3,1) = i€ o (22, T3), P(x2,T3,t) = i oo (x2, 73).

From (65) we have an expression for vs. By means of the latter, in view of
(62), we can calculate ¢ which we have to substitute in (63). Then substituting the
obtained expression of p(x2,x3,t) in (63), by virtue of (60), we get the following
expression for go(z2)

2 5 l h)(wz) 73
w r(éx
go(x2) = Wp /wo(f) r_(:cmi) (66)
0 ) i
— h (z2)

y (1.2 = f) cos ¢(§7$3)—2¢(€v2y23) + z3sin ¢§€yza)*2¢'(z2,13)
(€ — x2)? + %

d$3d£

(;)((L’2) ; . :
—w?p’ / T2 — = | cos __¢>(m2,x3) + z3sin $(x2,73) V300073 ,
2 2 2 T($2,.’L‘3)
-+

- h (z2)
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where ¢(z2, z3) is defined either by
cos p(za, z3) = (22 — 22 — l23) /7 (29, T3)

or by
sin ¢(z2, x3) = (222 — )33/ (22, 73)

and

r(z2, T3) = \/(a:% — 22 — l29)2 + ((2z2 — l)z3)2.

Taking into account (60), (61), (66), from (64) after integrating four times with
respect to o we get the following relation

wolws) — 2p°? /h(s)K(xz,a)wo(@df: / (ca€ +c2) (w2 — £)D(€)de
B o / K (22, €)q0(€)dE, (67)
where -
€01, K(zz,6)=— / (@2 — (E — D~ (n)dn,
13

Constants ¢; (i = 1,...,4) should be defined from the admissible boundary value
conditions (see in Section 2, Problems 1-10).
Let us consider, e.g., Problem 8. Then for wg(z2) we get the following equation

l

] = o / Ky (22, €)wo (€)de

0
T2 !
~ 2 / B(E)K (2, €)wo (€)dE + / h(E) K (2, €)wo(€)de
+ [ Ko(es,uo(@)de { = f(z2), (68)
0

where

Ko(z2,8) = E{/xzD”l(n)dn - /nD‘l(n)dn} - K(0,¢),

Bl d) = / D™ (n)dn
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z2

!
- / 72D~ (n)dn + 22 | (7 - £)D~ (m)dn,

0 3
! %o
r€ x
K =2 1 [Kienq) [ LG
5 T(<,$3)
5 +)
- h'(¢)
. (¢ — &) cos ¢(E»$3)g¢(cyz3) + z3sin 4’(5,-’63);45((,033) dade
€-0%+3 ?
(+)
0 R () E3)
TS, X3
+/Ko($2,C) / .- —
-0 @ V T(C,.’Ifg)
) - K (0
y (¢ — &) cos ¢(E,13);¢(C,$3) + z3sin ¢(5,E3)‘2‘¢(C,Z3) -
(€= ¢)? +23 ’
T2 (;)(C)
+/K(I2,C) / T(g,.’[g)
o T(C,.’L',?,)
zy +)
-k ()

(C—{)cosw +x3sinw
% Z 2 : dz3d( ¢ ;
(g5t I3

! !
f(z2) = 2 (922 + hzz/ﬁD_l(f)dé + hu/Dl(f)df)

+g911 + hzz/sz_l(f)df
0

wg T2 !
_h”/ ED(&)dE - / (ha2€ + h11)(z2 — €)D 71 (£)dE — w?p! { / Ki(z2,€)
0 2 29

(+]

h (&)
=X P, 73) (S $3)} v9.0dT3 q
x_(;:[(@ {(E 2) cos 5~ +a3sin — ey ¢

21
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0 P
- /Ko(zz,ﬁ) / {({—é) cos@—kmgsmw}
2 +)
— R (&)
U3e003
T - /Ko 22,€)
+)
P 1 s B(¢,3) | Vlnda
y 43 . y L3 300 3
X (+)/ {(§ - 5) cos — + z3 sin 5 } "€ ) d§} .
— h (z2)

It is easy to show that
2p°h(§) K (z2,€)

2psh(£)K0((L‘2, 5) )
2p°h(§) Ki(x2,£)

K (z2,€) € C([0,1])

(in our case 0 < a < 2, 0 < B < 1). The integral equation (68) can be solved by
method of successive approximations.

Remark 3.1 In case of the other above boundary conditions (see Problems 1-7, 9,
" 10), the problem under consideration is solved analogously and in all the cases we
get integral equations of (68) type.

Thus, the following Proposition is valid.

Proposition 3.2 Problem of the harmonic vibration of the plate with two cusped
edges under action of the incompressible ideal fluid [i.e., equations (62), ( 63), (64),
under transmission conditions (54 ), (59) and under conditions at infinity (51), (52)
and BCs (see Problems 1-10)] has a unique solution when

where

M := 20°h ),
mr,rglgfé”{l p°h(§) K (22, 8)|

120°h(§) Ko(z2,8)|, [20°h(§) Ki(x2,§)l, |Ki(22,€)I}-
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3.2. Case of a Viscous Fluid

Let the motion of the fluid be sufficiently slow, i.e., v; and v (i,k = 2,3) be so
small that linearization of Navier-Stokes equations (see [12,19,25]) be admissible.
Hence,

ng 1 6p

i O O 8 A F: t

5t = o By T VAWt 2(72, T3, ),

(69)

Ovs 1 9p

—_— = - A F. t

5t Pf Bt + vAvs + 3(.’1:2,1'3, ),

where v = u/pf, A = W + ﬁ;, F := (F3, F3) is a volume force. Let

v € CHOANHNCRH)NC({E>0), i=23;
peC* ()
q,2 ("t) € H([Oal]),

and
Fe C*Qf), i=2,3.

Let

A% = lim Fy(&2,x3)dé + F3(0a€3)d§3) :
/ /

|z|—00

After differentiation of the first equation of (69) with respect to z2, of the second
equation of (69) with respect to z3 and termwise summation, by virtue of (56), we
obtain that p(z3,x3,t) is satisfying the following equation

OF: OF:
Ap(zg, x3,t) = (55 = 6—x§> ol

In case of harmonic vibration in the fluid part, from (69), (61), (70) we obtain
the following system

(70)

OFY OFY
Apo(l?z,l‘g) =p (6‘3:2 + a—xz> (71)
1 dpo ;
—fy =— 0 =2
w u; pf ax] +mwAu + Fj(x2,%3), J 3, (72)

where Fj(x2,x3) = e“F)(x2,x3).
The transmission conditions (59), (54), (55) and conditions at infinity (51) and
(53) have the following forms

—pgy (x2) + Py (22) = lIo(xz 2 €]0, 1, (73)
’ng(.’L'g,O) = wO(x2)7 u2 - Oa T2 € [Ovl]v (74)
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After taking apart real and imaginary parts in (72) we have

o_ 1 0pp 1

u; = prf 81: FFJQ($2,$3), Jj=2,3, (76)
Auf=0, j=23. (77)
Therefore, taking into account (71),
0 (OFY OF)
—— KPl=0; j=28 78
O, <5$2+5a¢3>+ j= (78)

In view of (70) and (78) for j=2, we have

Ap(zz,z3) = pf (/AF2(§2,33)d§2+a(x3)>

OF: OF:
= ( (29,2 3)+—3(932,933))Pf

O0zo ors
_ (9FR OFs 7 f
(52020 + 320,22)) o +afan)e’

By virtue of (70) we get

a(zs) = gi( ,Z3) + OF 2(0 z3).

On the other hand
4 Vi OF.
[ ARdge = [ Fades - 52(0,29).
T2
0 0

Taking into last tree expressions we obtain

A (Po —Pf/Fz(ﬁzama)dﬁz) = fgi(o z3).

0

The solution of the last equation under condition (73), (75), in case go(z2) € H([0,1])
(H is the class of Holder continuous functions), has the following form (see [17])

T2

!
d
po(T2,23) = ;; @%"’P /Fz(iz,xg)diz
0 0 (79)

z3

= o / Fy(0, £)dés + pE° — pf A%

o
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Substituting (79) into (76), for u3 we get

l
@ o= /qo(f)[w§~(§_z2)2]d€+$< 8F2(§2,w3)d§2

Irte? | (€ w2t + 23
0
+ [ Fs(O,fs)dﬁa)—éFg(wzaxs)- (80)
0

Hence, using transmission condition (74) for u3, we get the following expression

l

110
wo(w2) 27rw2 0/ & — xz3)? d§+
+ ;15 ( L (§2, )d§2F3(0,0)) éFg(xg,O), (81)

where x5 € [0,1] and the super singular integral on the right hand side we define as
H’adamard integral (see [1,3]).

Substituting (81) into (28), for go(z2) we obtain the following supersingular
integral equation

l

l
[ @2der2mty [ Kienmierat
0

0
/ { / & ””2’@9(5 d€ b go(m)dn

l
= —27rpf I:Fg(mg,O) —w2/K($2,§)9(5)F3(§a0)d§]
0

+2mpf / 2(£,0)d¢ + F3(0,0) (82)

1
wZO/K xa,& { ng( ,0)+F3(0,0)}d77d§:I =: f(z2).

We will find approximate solution of (82) using the method of solving given in
books [1,3] for gf(z2) := (dgo(z2)/dz2) € H([0,1]).
Let divide interval [0,!] into N parts as follows

Ik p— Ik 1 p—
[ = = — _ = =
Yy =5 B=0N, ge=F+om k=0N-1,

qoN = (qO(yO), ey qO(le))a



26 On a cusped elastic solid-incompressible fluid interaction problem...

we will call goy approximate solution of (82). For gon we get the following system
of linear equations

1 1
———110 yz ZQO(yJ I: 7 - :l

Yire Y Y~ Vi

J#z
omw?pfl w2l =
+—— Z K (i, 43)9(y;)00(y;) — 77 Z (i, ¥3)9(y5)
j=0 j=0
N-1
AN 1 1
X8 —59(¥Y;) + ) a0(Yk - : 83
kit

— fw), i=O0,N -1

It is well-known (see [3]) that the determinant of the system (83) is not zero.
Therefore, (83) is uniquely solvable.

Now, we have to estimate the error of the approximate solution of the equation
(82). Let us denote by ¢ the solution of (82), by g3, the solution of (83) and let
dgn be a projection of ¢ on yi. Further, we obtain

4N

1 1
—— (aon (¥:) — don (vi)) aon (¥5) — don (¥; -
1 (ON(l ON Z{ON J ON( ])}{y§+2_yz y;_yz}

J#z

l
=ﬂ/%d§_—0N%+Z%N%{/1 o }

Yjri —Yi y;- — Y%

J#i

y£+1 £+1
% (§) QO(yz % (8) — qo(y])d L+ 1
5/ €= w)? *Z,/ -y | ThtR

Ys i 0 Y

Therefore, since gy(z2) € H([0,1]), we have that there exist A = const > 0, and
a1 = const 0 < a1 < 1 such that

lao(y1) — qo(w2)| < Alyr — ya|**.
Using the following expression
Yigr
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we obtain

vy (&) —a(y:) — (E— {d—qog‘lﬁ yz}
" = / E=

/

Y;
Vil dgy(6) _ da3(6) -
=203 o _Q__ i 1
= % le=u. d¢| < A (&) : (84)
/ £~ yz l
Y;
Analogously, we get
2N
I, < A(N - 1) ( ) . (85)

From (84) and (85) we obtain that the error of this method might be too large.
For getting the most better results instead of the system (83) we consider the
following system

N-1
’ 1 1
Qi i) — do\Y; -
go(yi) Z 0(y5) [y;+,- i yz-]
27rw p f1 w P
Z K (4 4;)9()a0 () + 5 Z K(4i,95)9
3=0
1 1
aiiqo(Y;) — ) qo(yk) = : (86)
{ ’ Z Yorj —Yi Yk Ui
= f(y;), i=0,N—1.
where - dt
s !
i 1 (E v )2> Ay [0,4n (.yz vaz-\—l + Nl
, N-1
eV = X
=0
J#i—1, i, i+l

After repeating above calculation we get

* * 2n o
lgo —gonl < A (T) ,

where g3 and g, are the solutions of the equations (82) and (86) respectively.
After calculating gon, from (79) and (81) we get approximate expressions for
Po(z2,z3) and wo(z2), as follows

Z2

N-1

x3l

po(ze,23) = _27:-3]\] ('QO(U)J)+m2+p /Fz(ﬁg,l’g)dfg
j=0 0
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3
o [ Fa0,6)des + 08+ A%, (@2,00) € 9
0
1 iy 1 1
wo(ys) = TP aiiqo(y:) — zz:OQO(yj) L/;'H i V- yz}

Yi
1 OF, 1.z
+ 2 | [ 5@ 0de + RO | - R0, @ e,
0

Let us denote by wo(y;) the projection of wg on ¥; and let estimate the error of
the approximate solution of deflection. If the repeat the above calculation we get

= 1 2n —Q]
o)~ wo(w)] < Az (7) .

Further, after Substituting po(z2,x3) in (76) we obtain u?(xg, z3).

Proposition 3.3 In case of the harmonic vibration of the plate with two cesped
edges under action of the incompressible viscous fluid [i.e, equations (71), (72), (27)
under transmission conditions (73), (74), conditions at infinity (75) and BCs (see
Problems 1-10)] all quantities (u3(z2,z3), u3(z2,23), po(x2,x3) and wo(x2)) can be
expressed by lateral load (qo(z2)) (see formulas (79)-(81)) and for the calculating
of qo(z2) we get (82) type super singular integral equation, where super singular
integral is defined as H’adamard integral. This equation has solutions in the class
qo € H([0,1]) (H is a class of Hélder continuous functions).
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