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This paper presents a study of the flow of a viscous incompressible fluid along a heated
wedge, taking into account the variation of the viscosity with temperature. The flow is
under the influence of a magnetic field B(x) along y direction applied perpendicular to
the surface of the boundary layer along x direction and an electric field E(x) along z di-
rection. The boundary layer equations are transformed to nonlinear ordinary differential
equations and are solved numerically. The effects of the magnetic field on the velocity
and the temperature and the shear stress on the surface (τw) are studied. It is found that
the velocity of the fluid increases with increasing the magnetic field parameter M , with
the other parameters kept constant. It is also established that the temperature of the
wedge decreases with increasing M value. The value of the skin friction increases whereas
the rate of heat transfer decreases owing to increasing the magnetic field parameter and
also according to decreasing the viscosity.
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1. Introduction

Laminar forced convection and heat transfer of incompressible Falkner-Skan flows
for an isothermal wedge has been studied by many investigators. The viscosity of
gases generally increases with temperature, whereas liquid viscosity decreases with
temperature. Therefore, for heating a fluid, the effect of temperature on viscosity
is to decrease transport in gases and to increase transport in liquid.

The different relations between the physical properties of fluid and temperature
are given by [1–4]. Elbashbeshy and Ibrahim [5] studied the flow of viscous incom-
pressible fluid along a heated vertical plate, taking into account the variation of
the viscosity and thermal diffusivity with temperature. Elbashbeshy and Dimian
[6] studied the effect of radiation on the flow and heat transfer over an isothermal
wedge with variable viscosity.

The action of the magnetic field on the fluid has many practical applications
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for example, plasma welding, nuclear industry and many other, so the effect of an
applied magnetic field on the fluid past a semi-infinite plate was studied by many
researchers [7,8,9,10]. Ibrahim and Terbeche [7] studied, the boundary layer flow
of a power law non-Newtonian fluid in the presence of magnetic field B(x) applied
perpendicularly to the surface and an electric field E(x) perpendicular to the B(x).

They have also and the direction of the longitudinal velocity in the boundary
layer with constant viscosity. The unsteady laminar boundary layer flow of an
electrically conducting fluid past a semi-infinite flat plate with an aligned magnetic
field has been studied by Takhar et. al. [8]. They assumed that when time the
plate is impulsively moved with a constant velocity which is in the same or opposite
direction to that of free stream velocity. They took into account the effect of the
induced magnetic field and the viscosity was constant. Ibrahim [9] presented an
analytical and numerical solution for the momentum and thermal boundary layer
equations of a non-Newtonian power law fluid over a wedge. Recently, Elbashbeshy
[10] studied the steady free convection flow with variable viscosity and thermal
diffusivity along a vertical plate in the presence of a magnetic field.

The present work has the advantage that it improves the results obtained earlier
in [6] and [7] as follows:

(i) In [6] the effect of the magnetic field can be inserted,

(ii) In [7] the variation of the viscosity with temperature can be taken into account.

Moreover similar solution of the boundary layer equations is obtained. The varia-
tions of the dimensionless velocity, temperature profiles with the parameters of the
flow are obtained. The skin friction coefficient and the Nusselt number are also
calculated for considered case.

2. Formulation of the problem

Consider a steady forced convection along a wedge imposed in a magnetic field. We
assume that the origin is taken to be the front point of the wedge, x is the direction
of the surface of the wedge and y is normal to it upward as shown in Figure 1.
Let V̄ be the velocity of the fluid and u and v are the velocity components in
x and y directions, respectively. We also assume that the magnetic field B̄(x) is
perpendicular to the surface of the boundary layer, i.e., it is function of x and
parallel to y-axis B̄(x) = B(x)j̄.

Here we assume that the induced magnetic field which is produced by the motion
of the electrically conducting fluid is negligible because it is small compared with
the magnetic field. This assumption is valid for small magnetic Reynolds number.
Let the electric field Ē(x) be perpendicular to both B̄(x) and the direction of
the longitudinal velocity in the boundary layer, i.e., Ē(x) = E(x)k̄. Also let the
temperature of the wedge surface be Tw and T∞ be the temperature of the free
stream having the velocity U∞.
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Figure 1 Coordinates (x, y, z) and the components of the velocity over a wedge

Thus we can write the boundary layer equations which are the conservation of
mass, momentum and heat as [7,11,12]
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Subject to boundary conditions:

u = v = 0 , T = Tw at y = 0 ,

u → U∞(x) = Cx
1

3 , T → T∞ as y → ∞ , (5)

where ρ is the density of the fluid, P is the pressure of the fluid, µ is the variable
viscosity coefficient, J̄ is the electric current vector, (J̄ ∧ B̄)x is the x-component
of (J̄ ∧ B̄), α is the thermal diffusivity, σ is the electrical conductivity, T is the
temperature of the fluid, U∞(x) is the main stream velocity at the edge of the
boundary layer and C is constant. The velocity component u will in general increase
from zero value at the wedge surface to the value U∞(x) at the edge of the boundary
layer. If ī and k̄ are unit vectors in the x and z directions respectively, then

J̄ = σ(E + uB)k̄ , (6)

(
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)

x
= −σB(E + uB) . (7)

On the edge of the boundary layer, the velocity u equals the outer flow velocity
U∞(x) while the pressure P does not change, thus equations (2) and (7) will give
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Eliminating ∂P
∂x

from equations (2) and (8) and then using (7), we get
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Thus our governing equations are (1), (9) and (3) subject to the boundary conditions
(5). The continuity equation (1) is satisfied by introducing the stream function
ψ(x, y) such that

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (10)

To transform the partial differential equations (9) and (3) into a set of nonlinear
ordinary differential equations, the following dimensionless variables are introduced
[6]:
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where f(η) is the dimensionless stream function, θ(η) is the dimensionless tempera-
ture and ν = µ0

ρ
is the kinematic viscosity and µ0 is the viscosity of the fluid outside

the boundary layer (as y → ∞).

It has been proved that, if the outer flow velocity U∞(x) (potential flow) is
proportional to the arc length x raised to a power m, then the similarity solution
for equations (9) and (3) is possible only when m = 1

3
, which represents flow past a

wedge of included angle π
2
. Also for the magnetic field B(x)j̄, it is found that the

power of x must equal to −
1

3
. Thus,
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1
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0
x−

2

3 , (12)

where C and B0 are constants.

The variation of the viscosity with temperature θ, is taken in the form [5,9,16]:

µ = µ0e
−γθ , (13)

where γ is the viscosity parameter depending on the nature of the fluid. By using
the transformations (11)–(13), equations (9) and (3) are transformed to

f ′′′
− γf ′′θ′ + eγθff ′′ +

1

2
eγθ(1 − f ′2) + Meγθ(1 − f ′) = 0 , (14)

θ′′ + Prfθ′ = 0 , (15)

with the boundary conditions:

f = f ′ = 0 , θ = 1 at η = 0 ,

f ′
→ 1 , θ → 0 as η → ∞ , (16)

where M = 3σb2

2ρC
is the magnetic field parameter and Pr= ν

α
is the a Prandtl number.

The prime denotes differentiation with respect to η.
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3. Results and discussion

The nonlinear ordinary differential equations (13) and (14) with the boundary con-
ditions (15) have been solved by the fourth-order Runge Kutta integration scheme
along with the Nachtshem-Swigert shooting technique [12] with error of order 10−6.
The procedure is to estimate the unknown values of f ′′(0) and θ′(0). If we neglect
the electric and magnetic fields and take the viscosity constant (M = 0, γ = 0),
then equations (13) and (14) reduce to those of heat transfer for the Falkner-Skan
flows [13,14]

f ′′′ + ff ′′ + β(1 − f ′2) = 0 , (17)

θ′′ + Prfθ′ = 0 , (18)

subject to the same boundary conditions

f = f ′ = 0 , θ = 1 at η = 0 ,

f ′
→ 1 , θ → 0 as η → ∞ , (19)

(for the special case if the angle of the wedge = π
2
, so β = 1

2
). In order to verify the

accuracy of our present method, we have compared our results with those of [14] at
Pr= 0.733, β = 0.5 we got f ′′ = 0.927685, but in [14] f ′′ = 0.9277, which is in good
agreement.

If the viscosity is constant (γ = 0), our equations will reduce to those of Ibrahim
[9] in his special case for Newtonian fluid (n = 1) and if there is no dissipation of
energy due to the viscosity and the electric field.

The physical quantities of interest are the skin friction coefficient and the Nusselt
number. The shearing stress on the surface is defined as

τw = µ

(

∂u

∂y

)

y=0

= e−γµ0

√

2C3

3ν
f ′′(0) , (20)

where f ′′(0) is the skin friction coefficient.
The local Nusselt number for heat transfer in the present case is defined by

Nu = −x

(
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∂y

)

y=0
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= −x−
2

3

√

2C

3ν
θ′(0) , (21)

where θ′(0) is the heat rate transfer.

The range of variation of the parameters of the flow y and the Prandtl number, Pr,
can be taken as follows [15]:

(i) for air: −0.7 ≤ γ ≤< 0, Pr=0.733,

(ii) for water: 0 ≤ γ ≤ 0.6, 2 ≤ Pr ≤ 6.
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Figure 2 Representation of the velocity f ′ with different values of the viscosity parameter γ at
M = 1, Pr=0.733 for air and Pr=4 for liquid

Figure 3 Representation of the temperature θ with different values of the viscosity parameter γ

at M = 1, Pr=0.733 for air and Pr=4 for liquid

Figure 4 Representation of the velocity f ′ with different values of the magnetic field parameter
M (M = 0.0, 0.5, 1.0, 1.5, 2.0), γ = −0.3, Pr=0.733
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It is clear from Figure 2 that the velocity f ′ increases with increasing the viscosity
parameter γ (decreasing the viscosity µ) for both air and liquid, at constant value
of magnetic field M = 1 and at Pr= 0.733 for air and Pr= 4 for liquid. If we
assume that there are neither electric nor magnetic fields, this result agrees with that
obtained by Elbashbeshy and Dimian [6] for their special case when the radiation
effect is negligible. From Figure 3 we can see that the temperature θ decreases
with increasing γ at M = 1. From Figure 4 we can see that the velocity f ′ of air
increases with increasing the magnetic field parameter M for γ = 0 and Pr= 0.733.
We also obtained like these curves for liquid. This result agrees with that obtained
by Ibrahim and Terbeche [7] for their special case of Newtonian fluid (n = 1). From
Figure 5 we can notice that the effect of M on the temperature resembles that of
γ.

Figure 5 Representation of the temperature θ with different values of the magnetic field parameter
M (M = 0.0, 0.5, 1.0, 1.5, 2.0), γ = −0.3, Pr=0.733

That is the temperature θ decreases as the magnetic field M increases, for both
air and liquid. Figure 6 (for gases) represents the effect of both the viscosity param-
eter γ and the magnetic field M together on the velocity f ′. It is seen that the effect
of the magnetic field M only is greater than the effect of the viscosity parameter γ

only for the given values in the figure. But the effect of the two parameters M and
γ together is greater than the effect of any one of them alone.

For example, at (η = 1) any vertical plane, we can notice that the increase
in the value of f ′ corresponding to an increase in γ only is 0.06. The increase in
the value of corresponding to an increase in M only is 0.14. The increase in the
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Figure 6 Representation of the effect of the magnetic field parameter M and viscosity parameter
γ together on the velocity f ′ when Pr=0.733 (for air)

value of corresponding to an increase in M and together is 0.20. So, the magnetic
field parameter M together with the viscosity parameter γ have strong effect on
the velocity. They together increase more than any one alone. From Figure 7, we
can see an inverse effect of M and together on the temperature θ. It is shown that
the decrease in θ corresponding to increase in M is greater than the decrease in θ

corresponding to increase in γ. If we use the two parameters M and γ, so we will
get lowest temperature. Figure 8 (for liquids) represents the effect of both M and
γ on the velocity f ′. We notice that the effect of the magnetic field M only on the
velocity f ′ is greater than the effect of both M and γ together. Finally Figure 9
represents the effect of M and γ together on the temperature θ for gases. It is
shown that the decrease in θ corresponding to increase in M only is greater than
the decrease in θ corresponding to M and γ together.

From Table 1 we notice that:

1. The skin friction coefficient f ′′(0) increases as γ increases (the viscosity of air
or water decreases) for different values of magnetic parameter M .

2. The rate of heat transfer θ′(0) at the wedge decreases very small as γ increases
for different values of the magnetic field parameter M .

3. The skin friction coefficient f ′′(0) increases as increasing the magnetic field
parameter M for different values of γ.

4. The rate of heat transfer θ′(0) at the wedge decreases with increasing of M .

5. It is clear that the the skin friction coefficient f ′′(0) has the largest value when
we use M and γ together.
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Figure 7 Representation of the temperature θ with different values of the magnetic field parameter
M (M = 0.0, 0.5, 1.0, 1.5, 2.0), γ = −0.3, Pr=0.733

Figure 8 Representation of the effect of the magnetic field parameter M and viscosity parameter
γ together on the velocity f ′ when Pr=0.733 (for air)

M = 0.0 M = 0.1 M = 1.0
γ f ′′(0) −θ′(0) f ′′(0) −θ′(0) f ′′(0) −θ′(0)

Pr=0.733 0.0 0.92768 0.47889 0.92768 0.47889 1.35991 0.51061
-0.3 0.80109 0.46619 0.84525 0.47058 1.14018 0.49585
-0.6 0.69194 0.45363 0.72977 0.45803 1.01014 0.48584

Pr=4.0 0.0 0.92768 0.89609 0.97919 0.90725 1.35991 0.97827
0.3 1.07387 0.92420 1.13396 0.93554 1.58535 1.00843
0.6 1.24314 0.95302 1.31325 0.96453 1.83010 1.03716

Table 1 Represents the value of the skin friction f ′′(0) at the surface and the temperature gradient
θ′(0) with different values of γ and M at Prandtl number Pr=0.733 for air and Pr=4 for liquid
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Figure 9 Representation of the effect of the magnetic field parameter M and viscosity parameter
γ together on the velocity f ′ when Pr=0.733 (for air)

4. Conclusions

1. Increasing the magnetic field with the presence of electric field causes increase
of the velocity of the flow but decrease the temperature of the flow. So the
magnetic field can therefore be used to control the flow characteristics.

2. The value of the skin friction f ′′(0) increases whereas the rate of heat transfer
θ′(0) decreases owing to increase of magnetic field in presence of an electric
field.

3. The value of the skin friction f ′′(0) increases whereas the rate of heat transfer
θ′(0) decreases with decreasing the viscosity (γ increases).

4. The magnetic field parameter M together with the viscosity parameter γ have
strong effects on the velocity f ′ and the temperature θ. They together increase
f ′ and decrease θ more than any one alone (for liquids).

5. The magnetic field parameter M (alone) has strong effects on the velocity f ′

and the temperature θ (for gases). It increases f ′ and decreases θ more than
M and γ together.
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