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The problem of the unsteady free convection flow in a fluid saturated porous medium of
a rotating sphere in the presence of a solid matrix exerting first and second resistance
is studied. Numerical solutions are obtained for the cases of constant wall temperature
(CWT) and constant heat flux (CHF). The non-linear coupled partial differential equa-
tions governing the flow have been solved numerically using finite difference. The effects
of the first resistance parameter ξ, the buoyancy parameter λ, the Prandtl number Pr,
the variation of the angular velocity with time (ǫ > 0) on the skin friction and heat
transfer rate ue discussed. is shown the figures. It is found that the buoyancy force
enhanced both the skin fraction and the heat transfer rate. The effect of the presence of
the first resistance decreases the skin friction and the heat transfer rate.
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1. Introduction

Free convection heat transfer in a porous medium has been studied widely in litera-
ture. Cheng [1] provides an extensive review of literature on ee convection in fluid
saturated porous media with regard to application in geothermal systems. Nield
and Bejan [2] given an excellent summary of this subject. Excellent reviews of the
literature dealing with the free convection flows are presented by Ede[3J, Gebhart
[4] and Gebhart et al. [5]. The problem of free convection arises in a fluid when
the temperature changes cause density variations leading to buoyancy forces. Some
of the recent studies on the free convection flows include those of Merkin [6,7],
Watanabe [8] and Takhar et al. [9]. Self-similar solution of the unsteady flow in the
stagnation point region of a rotating sphere with a magnetic flied have been studied
by Takhar et al. [10,11]. The heat transfer mechanism involving flows in contact
with the walls, which undergo a transient change, is important in industry such as
in power transformers and nuclear reactor. Although steady free convection prob-
lems have been studied extensively, the analogous unsteady problems have received
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comparatively less attention.
The present analysis deals the unsteady free convection flow in the forward

stagnation-point region of a rotating sphere in the presence of a solid matrix, exert-
ing first and second-order resistance. The unsteadiness is caused by the rotation of
the sphere, which varies arbitrary with time. Both constant wall temperature and
constant heat flux conditions have been considered.

2. Governing eguations

Let us consider an unsteady free convection boundary layer flow in the forward
stagnation-point region of a heated sphere, which is rotating with time dependent
angular velocity Ω in a fluid saturated porous medium, under a gravitational field
which is parallel to the axis of rotation. The temperature of the ambient fluid is
taken as a constant. Also the temperature at the wall or the heat flux at the wall
is taken as a constant. Assuming that:

(a) the fluid has constant properties except the density changes which produce
buoyancy forces,

(b) the effect of the buoyancy-induced streamwise pressure gradient terms on the
flow and temperature fields is negligible,

(c) the fluid and the porous medium are the local thermal equilibrium,

(d) The viscous dissipation terms are negligible.

Under the above-mentioned assumptions, the boundary layer equations govern-
ing the flow can be expressed as
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The initial and boundary conditions are given by

u(x, y, 0) = ui(x, y) ,

v(x, y, 0) = vi(x, y) ,

w(x, y, 0) = wi(x, y) ,

T (x, y, 0) = Ti(x, y) , (5)

u(x, 0, t) = ν(x, 0, t) = 0 ,

w(x, 0, t) = Ω(t)x ,
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T (x, 0, t) = Tw or − k
∂T (x, 0, t)

∂y
= qw , (6)

u(x,∞, t) = w(x,∞, t) = 0 ,

T (x,∞, t) = T∞ .

where x, y and z are coordinates measured from the forward stagnation point along
the surface, normal to the surface and in the rotating direction, respectively; u, v
and w are the velocity components along the x, y and z directions, respectively; t
is the time; g is the acceleration due to gravity; L is the characteristic length, α
and ν are thermal diffusivity and kinematic viscosity, respectively; k is the thermal
conductivity, ǫ is the porosity; K is the permeability; Γ empirical constant in the
second-order resistance; T is the temperature in the boundary layer; β is the vol-
umetric coefficient of thermal expansion; qw is the heat flux at the wall; Tw and
T∞ are the wall temperature and the ambient temperature, respectively; Ω is the
angular velocity of the body and Ω0 is its value at t = 0; the subscripts i, w and ∞

denote initial condition, condition at the wall and ambient condition, respectively.
We apply the following transformations for the constant wall temperature case
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Substituting with this non-dimension transformation in Eqs. (1–4),the governing
momentum and energy equations for the CTW case can be written as:
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s′′ + φ(fs′ − f ′s) − (2φ)−1 dφ

dt∗
s− 2−1 ∂s

∂t∗
= 0 , (9)

Pr−1G′′ + φfG′
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and the boundary conditions (5) and (6) can be expressed as:

f(0, t∗) = f ′(0, t∗) = 0, s(0, t∗) = 1,

G(0, t∗) = 1, f ′(∞, t∗) = s(∞, t∗) = G(∞, t∗) = 0 . (11)

On the other hand for the constant heat flux case (CHF) we apply the following
transformations,
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For the constant heat flux case (CHF) the equations corresponding to equations
(8)–(10) are given by
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The boundary conditions for the CHF case are given by

F (0, t∗) = F ′(0, t∗) = 0, S(0, t∗) = 1,

θ(0, t∗) = −1, F ′(∞, t∗) = S(∞, t∗) = θ(∞, t∗) = 0 . (16)

The initial conditions are given by the steady-state equations obtained by putting

t∗ = 0 , φ(t∗) = 1 ,
dφ

dt∗
= ft∗ = st∗ = Gt∗ = Ft∗ = St∗ = θt∗ = 0 ,

in equations (9)–(14). The steady state equations for the CWT case are given by
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s′′ + (fs′ − f ′s) = 0 , (18)

Pr−1G′′ + fG′ = 0 . (19)

The boundary conditions for the CWT case can be expressed as

f(0) = f ′(0) = 0, s(0) = 1, G(0) = 1, f ′(∞) = s(∞) = G(∞) = 0 . (20)

The steady state equations for the CHF case are expressed as

F ′′′ + FF ′′
− 2−1

[

F ′2 + ψxF
′2
− S2

]

− ξF ′ + 2−
3

2λ1θ = 0 , (21)

S′′ + (FS′
− F ′S) = 0 , (22)

Pr−1θ′′ + Fθ′ = 0 . (23)

The boundary conditions for the CHF case are given by

F (0) = F ′(0) = 0, S(0) = 1, θ(0) = −1, F ′(∞) = S(∞) = θ(∞) = 0 . (24)

here η is the transformed dimensionless variable; t∗ is the dimensionless time; f and
F are the dimensionless stream functions for the CWT and CHF cases, respectively;
f ′ and s are, respectively, the dimensionless velocities along x and z directions for
the constant wall temperature case; F ′ and S are the corresponding velocities for
the CHF case, G and θ are the dimensionless temperatures for the CWT and CHF
cases, respectively; ξ is the first-order resistance; ψx is the second order resistance;
GrL and Gr∗L are the Grashof numbers for the CWT and CHF cases, respectively;
ReL is the Reynolds number; λ is the ratio of the Grashof number and the square
of the Reynolds number for the CWT case; λ1 is the ratio of Grashof number and
the Reynolds number raised to the power 2.5 for the CHF case; Pr is the Prandtl
number; prime denotes derivative with respect to η; and the subscript t∗ denotes
derivative with respect to t∗, φ is an arbitrary function of t∗ having first-order
continuous derivative.

The skin friction coefficients in x and z directions for the CWT case are respec-
tively, given by
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Similarly, the skin friction coefficients in the x and z directions for the CHF case
are

C̄fx =
τ1

ρΩ2
0x

2
= 2

1

2 (Rex)−
1

2φF ′′(0, t∗) , (28)

C̄fz =
τ2

ρΩ2
0x

2
= 2

1

2 (Rex)−
1

2φS′(0, t∗) , (29)



94 Unsteady Free Convection Flow in the Stagnation-point Region of ...

The heat transfer coefficient in terms of Nusselt number for the CWT case can be
expressed as

Nu = −L
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The heat transfer coefficient for the CHF case is given in the form
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Here Cfx and Cfz are the skin friction coefficients in the x and z directions, respec-
tively, for the CWT case and C̄fx and C̄fz,are the corresponding expressions for
the CHF case; Nu and N̄u are the Nusselt numbers for the CWT and CHF cases,
respectively; τ1 and τ2 are the shear stress in the x and z directions, respectively;
ρ and µ are the density and coefficient viscosity, respectively; and Rex and ReL are
the Reynolds numbers defined with respect to x and L, respectively.

The systems of equations (8)–(11) and (13)–(16) have been solved by using the
finite difference methods explained by Pereyra and Sparrow [12,13]. To conserve
space the details of the solution procedure are omitted here.

3. Results and discussion

The non-linear coupled partial differential equations governing the flow have been
transformed to a system of ordinary equation by using the non-similar technique as
explained by Pereyra and Sparrow [12,13], ln order to validate our numerical solu-
tion, we have compared our steady state skin friction and heat transfer parameters
for the constant wall temperature case [f ′′(0),−s′(0),−G′(0)] with those by Takhar
et al. [14], when λ = 0 (in the absence of the buoyancy force). The results are
found to be in very good agreement. The comparison is shown in Fig. 1.

Figure 1 The variation of the skin parameter in x and z directions [f ′′(0, t∗),−s′(0)] and the heat
transfer parameter [−G′(0)] for the CWT case when t∗ = 0

For the constant wall temperature (CWT) case and for φ(t∗) = 1 + ǫt∗2, ǫ > 0 (i.e.
when the angular velocity Ω increases with time) the variation of the skin friction
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a)

b)

c)

Figure 2 The variation of the skin parameter in a) x direction [f ′′(0, t∗)] with time, b) z direction
[−s′(0, t∗)], and c) the variation of the heat transfer parameter [−G′(0, t∗)], all for the CWT case
when φ(t∗) = 1 + ǫt∗2

parameters in x and z directions [f ′′(0, t∗),−s′(0, t∗)] and heat transfer parameter
−G′(0, t∗) with time t∗ for several values of the buoyancy parameter λ, and for
several values of the first-order resistance parameter ξ is shown in Fig. 2(a–c). The
skin friction and heat transfer [f ′′(0),−s′(0),−G′(0)] are found to decrease with the
first-resistance parameter ξ increases, and its found that the first resistance have
not any effect in the absence of the buoyancy force (λ = 0). On contrary as the
buoyancy parameter λ increases the skin friction and heat transfer rate decrease.

For the CWT case and for φ(t∗) = 1 + ǫt∗2, ǫ < 0 (i.e. when the angular velocity
Ω decreases as t∗ increases) the variation of the skin friction parameters in x and z
directions [f ′′(0, t∗),−S′(0, t∗)] with time t∗ is presented in Fig. 3. It is seen that
f ′′(0, t∗) decreases with the first resistance and increases with time t∗. On the other
hand [−s′(0, t∗)] decreases with both the first resistance increase and time t∗.
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Figure 3 The variation of the skin parameter in x and z directions [f ′′(0, t∗),−s′(0, t∗)] with time
t∗ for the CWT case

a)

b)

c)

Figure 4 The variation of the skin parameter in a) x direction [F ′′(0, t∗)] with time t∗, b) the
variation of the heat transfer parameter 1

θ(0,t∗)
, and c) in z direction [−S′(0, t∗)], all for the CHF

case when φ(t∗) = 1 + ǫt∗2
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For CHF case and for φ(t∗) = 1 + ǫt∗2, ǫ > 0 the variation of the skin friction
parameters in x and z directions [F ′′(0, t∗),−S′(0, t∗)] and heat transfer parameter

1
θ(0,t∗) with time t∗ for several values of the buoyancy parameter λ and for sev-

eral values of the first-order resistance parameter ξ is shown in Fig. 4(a–c). The
trend of the skin friction parameter and heat transfer [F ′′(0, t∗),−S′(0, t∗), 1

θ(0,t∗) ]

is qualitatively similar to that of the CWT case. However, the skin friction and
heat transfer are found to be more than those of the CWT case.

a)

b)

c)

Figure 5 The variation of the skin friction parameter in a) x direction [f ′′(0, t∗)] with time t∗,
b) in z direction [−s′(0, t∗)], and c) the variation of the heat transfer parameter [−G′(0, t∗)] with
time t∗, all for the CWT case when φ(t∗) = 1 + ǫt∗2

For the CWT case, the variation of the skin friction and the heat transfer parameters
[f ′′(0),−s′(0),−G′(0)] with t∗ for several values of the first-order resistance para-
meter ξ); and for several values of the Prandtl numbers Pr when φ(t∗) = 1 + ǫt∗2,
ǫ > 0 is shown in Fig. 5(a–c). It is observed that the heat transfer decrease with the
first order resistance parameter and increase with the Prandtl number Pr, but the
skin friction parameters in the x and z directions [f ′′(0, t∗),−s′(0, t∗)] decreases with
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the first order resistance parameter increases and decrease with increase the Prandtl
number Pr. This results in a reduction of the thermal boundary layer thickness and
an increase in the gradient of the temperature and hence the increase in the heat
transfer rate. Since higher Pr implies more viscous fluid having a comparatively
thicker boundary, layer these results in reduction in the friction parameters.

References

[1] Cheng, P: Heat transfer in geothermal systems, Advances in Heat Transfer, 4,
(1978,), 1-105.

[2] Nield, DA and Bejan, A: Convection in porous media, Springer, New York, (1992).

[3] Ede, AJ: Advances in heat transfer, 4, Academic Press, New York ( 1967), 1.

[4] Gebhart, B: Advances in Heat Transfer, 9, Academic Press, New York, (1973), 273.

[5] Gebhart, B, Jaluria, Y, Mahajan, RL and Sammaria, R: Buoyancy Induced

Flows and Transport Hemisphere, New York, (1988).

[6] Merkin, JH: J. Engny Math., 33, (1989), 273.

[7] Merkin, JH and Mahmood, T: J. Engny Math., 24, 95, (1990).

[8] Watanabe, T: Acta Mech. 87, 1, (1991).

[9] Takhar, HS, Kumariad, M, Nath, G: Arch. App. Mech., 63, 313, (1993).

[10] Takhar, HS and Nath, G: Heat and Mass Transfer, 36, (2000), 89-96.

[11] Takhar, HS, Chamkha, AJ and Nath, G: Heat mass transfer, 37, (2001), 397-402.

[12] Sparrow, EM, Quack, H and Boerner, J: AIAA, 8, (1970), 1936-1942.

[13] Pereyra, V: Lecture Note in Computer Science, 76, Springer, Berlin, (1978).

[14] Takhar, HS, Slaouta, A, Kumari, M and Nath, G: Int. J. Non-linear Mechanics,
33, (1998), 857-865.


