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This paper treats the stability of an interface between two different fluids moving through
two different porous media. There is an alternating magnetic field parallel to the inter-
face and to the flow direction, and there is a concentrated sheet of electric current at the
interface which produces jump in the magnetic field strength. The evolution of the am-
plitude of propagation surface waves is governed by a complex Mathieu equation which
have damping terms. In the limiting case of non-streaming fluids a simplified damped
Mathieu equation has been imposed. At a critical value of the stratified magnetic field,
the ordinary Mathieu equation without the damping terms is derived. The contribu-
tion of viscosity to the existence of free electric surface currents on the fluid interface is
discussed. It is found that at the critical stratified magnetic field, the surface currents
density has disappeared from the interface whence the stratified viscosity has a unite
value. The stability criteria are discussed theoretically and numerically in which sta-
bility diagrams are obtained. Regions of stability and instability are identified for the
wavenumber versus the coefficient of free surface currents. It is found that the increase
of the fluid velocity plays a destabilizing influence in the stability criteria. Porous per-
meability and viscosity ratio play a stabilizing or a destabilizing role in certain cases. It
is found that the viscosity ratio plays a dual role in the stability behaviour at the reso-
nance case. The field frequency plays a stabilizing influence in the case of weak viscosity
analysis and at a special value of the magnetic field ratio. The destabilizing influence
for the field frequency is observed for the case of the Rayleigh-Taylor model and at the
resonance case.
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1. Introduction

The instability of the plane interface separating two fluids when one is accelerated
towards the other or when one is superposed over the other has been studied by
several authors. Chandrasekhar [1] has given a detailed account of these investiga-
tions. The instability of the interface may arise when the two fluids are in relative
motion. The instability of the plane interface between two superposed fluids with
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a relative horizontal velocity is called Kelvin-Helmholtz instability. The Kelvin-
Helmholtz instability has been studied extensively for continuum, inviscid flows.
The model for the classical Kelvin-Helmholtz instability involves a horizontal in-
terface between two fluids with different parallel, uniform, horizontal velocities. In
Kelvin-Helmholtz model, the effect of streaming is destabilizing in the linear sense
(Chandrasekhar [1]). This instability, which arises as a consequence of a relative
drift velocity of two fluids along the surface of discontinuity, has great relevance
to various physical phenomena such as commentary tails and the magnetospherical
boundary. The Kelvin-Helmholtz instability due to shear flow in stratified fluids
has attracted the attention of many researchers because of its determinant influence
on the stability of planetary and stellar atmospheres and in practical applications.
The study of the Kelvin-Helmholtz instability has a long history in hydrodynamics.
It is well known that in two-dimensional inviscid, incompressible hydrodynamics,
there are two invariants of fluid motion. The existence of these two invariants re-
quires that, in two-dimensional inviscid incompressible hydrodynamics, the energy
cascades to long wavelength or vortices with similarly signed vorticity must tend to
group together [2]. Indeed, hydrodynamic experiments have shown at the late stage
of the Kelvin-Helmholtz instability two vertical structures that combine to form a
single, larger vertical structure. Such a nonlinear evolution of the Kelvin-Helmholtz
instability has been reproduced by numerical experiments and theoretical investi-
gations [3].

The linear formulation of the Kelvin-Helmholtz instability in the context of
magnetic fluids was investigated by Rosensweig [4]. His analysis revealed that the
velocity difference that can be supported by the fluids before the instability sets in
is enhanced if the difference in the permeability of the fluids across the interface and
the strength of the applied magnetic field are increased. These fluids differ from
magnetohydrodynamic fluids since no electric surface current flows in these fluids.
The propagation of plane waves in magnetohydrodynamic fluids in the presence
of a tangential magnetic field has been investigated theoretically as well as exper-
imentally by Zelazo and Melcher [5]. These authors have demonstrated that the
magnetic field exerts a stabilizing influence on the stability of the fluid surface. In
their experiment, a plane wave of specific wavelength, consistent with the boundary
conditions, was imposed on the interface, and the subsequent frequency shift for
various strengths of the magnetic field was measured. Both theoretical and exper-
imental results show an upward shift of frequency of the imposed wavelength as a
function of the magnetic field.

In the comparable case of parallel flow, Drazin [6], Nayfeh and Saric [7] and
Weissman [8] have studied the nonlinear development of the Kelvin-Helmholtz in-
stability. In the presence of the vertical or the horizontal electric fields, Melcher
[9] discussed the linear Kelvin-Helmholtz instability for continuum incompressible
fluids. In one of the most recent works on this subject, the effects of periodic body
forces were discussed. The effect of a time-dependent acceleration in the presence
of tangential magnetic field on the nonlinear stability of Kelvin-Helmholtz wave has
been discussed by El-Dib [10]. Recently, El-Dib and Matoog [11] have studied the
Kelvin-Helmholtz instability for Maxwellian fluid sheet. They discussed the linear
instability for the influence with the periodic electric field. In nonlinear evolution
of the Kelvin-Helmholtz instability El-Dib [12] has demonstrated for dielectric vis-
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coelstic interface.
Many technological processes involve the parallel flow of fluids of different vis-

cosity, and density through porous media. Such flows exist in packed bed reactors
in the chemical industry, in petroleum production engineering, in boiling in porous
media and in many other processes as well. The flow through porous media is of
considerable interest for petroleum engineers and in geophysical fluid dynamicists.

Should the interface between the two fluids become unstable, a substantial in-
crease in the resistance to the flow will result. This increase in resistance, in turn,
may cause flooding in counter current packed chemical reactors and dryout in boil-
ing porous media. In the same vein, in petroleum production engineering, such
instabilities may lead to emulsion formation. Hence, knowledge of the conditions
for the onset of instability will enable us to predict the limiting operating conditions
of the above processes. The purpose of this paper is to establish the condition for
the onset of linear instability.

In all the works cited above, the medium is assumed to be non-porous. There
are two reasons to extend these studies to media containing porous layers: (i) the
Kelvin-Helmholtz instability is among the most simple and (ii) is the most frequently
met in practice among motions in the presence of a porous medium. For excellent
reviews about porous media, see refs. [13-15].

In contrast, the Kelvin-Helmholtz instability for flow in porous media has at-
tracted little attention in the scientific literature. The instability of the plane in-
terface between two uniform superposed fluids streaming through a porous medium
was investigated by Sharma and Spanos [16], and the Kelvin-Helmholtz instability
for flow in porous media was investigated by Raghaven and Mardsen [17] for Darcy-
type flow. They used linear stability analysis to obtain a characteristic equation
for the growth rate of the disturbance and then solved this equation numerically.
They concluded that Kelvin-Helmholtz instability is possible only if the heavier
fluid is over laying the lighter one (a statically unstable situation). This is obvi-
ously incorrect on physical grounds (possibly when Darcy’s term is dominant). A
linear theory of Kelvin-Helmholtz instability for parallel flow in porous media was
introduced by Bau [18] for Darcian and non-Darcian flows. In both cases, Bau
found that velocities should exceed some critical value for instability to manifest
itself. A series of studies for Kelvin-Helmholtz instability have been initiated by
Gheorghitza [19], and Georgescu and Gheorghitza [20], where uniform motions of
inviscid, incompressible fluids and heterogeneous porous media are considered in
several simple cases. In the presence of the horizontal electric field El-Sayed [21]
re-discussed the Bau problem [18]. Recently, Mohamed et al. [22] studied the non-
linear Kelvin-Helmoholtz instability in porous media in the presence of both vertical
and horizontal electric fields. This investigation is based on weak viscous effects.
El-Dib and Ghaly [23, 24] investigated linear and nonlinear interfacial stability for
flow in porous media in the presence of an oblique magnetic field. For arbitrary
viscosity and in the presence of the vertical magnetic field, El-Dib [25] investigates
the nonlinear Rayleigh-Taylor instability through porous media. Recently, El-Dib
[26] reinvestigates nonlinear Rayleigh-Taylor instability in the presence of magnetic
field parallel to the interface and to the flow direction, and there is a concentrated
sheet of electric current at the interface.

The phenomena of parametric resonance arise in many branches of physics and
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engineering. The treatment of the parametric excitation system having many de-
grees of freedom and distinct natural frequencies is usually operated by using the
multiple time scales as given by Nayfeh [27]. The behaviour of such system is de-
scribed by an equation of the Hill or Mathieu types [11] and [27]-[33]. It is well
known that the stability of such solutions may be described by means of the char-
acteristic curves of Mathieu curves which admit regions of resonance instability.
The phenomena of interfacial stability in multilayer flow of magnetic fluids are of
interest in many processing applications. The present work deals with the influence
of an alternating magnetic field on fluid flows in a porous medium that is assumed
to be more suitable in oil industry. A generalization of the Kelvin-Helmholtz insta-
bility for fluid flows in a porous is the goal in this study. In addition, the influence
of free surface currents has been demonstrated in this investigation. This influence,
for the presence of the surface current density, has been demonstrated before by
El-Dib [28] and by El-Dib and Moatimid [29], for rotating magnetic fluid column in
a continuum media.

2. Problem Statement and Basic Equations

We shall study two-dimensional progressive waves at the conducting interface y = 0,
which separates two incompressible moving Darcian fluids. The Cartesian coordi-
nates (x, y) are taken into consideration. By two-dimensional we mean that the flow
field depends on the horizontal direction of propagation, which will be x-axis. The
surface deflection is in the vertical y-direction and expressed by y = ξ(x, t). We are
interested in the interfacial response of the two phase’s system after a disturbance
of the equilibrium configuration. The equilibrium configuration is considered to be
two immiscible fluids which have constant properties and occupy the half-spaces of
uniform, homogeneous and isotropic porous media above and below a horizontal
plane. The fluids move with two different uniform, horizontal, parallel velocities.
The fluids are subjected to periodic tangential magnetic field.

H(j)(t) =
(

H
(j)
0 +H

(j)
00 cos̟ t

)

ex, (1)

H0 refers to the constant part of the field, H
(j)
00 (=

√
εH

(j)
0 , ε is a small dimensionless

parameter) is the amplitude of the periodic field and ̟ refers to the field frequency.
The unit vectors ex and ey are in the x- and y-directions. The superscript (1) and

(2) refer to the upper fluid and lower fluid, respectively. The fluid with density ρ(1),

uniform velocity U
(1)
0 , porous permeability q1 and hydrostatic pressure

P
(1)
0 = −

(

ρ(1)gy + η(1)U
(1)
0 q−1

1 x+ 1
2µ

(1)
(

H
(1)
0 +H

(1)
00 cos̟t

)2
)

, (2)

occupies the upper half-space for y ≥ 0, while the fluid with density ρ(2), uniform

velocity U
(2)
0 , porous permeability q2 and pressure

P
(2)
0 = −

(

ρ(2)gy + η(2)U
(2)
0 q−1

2 x+ 1
2µ

(2)
(

H
(2)
0 +H

(2)
00 cos̟t

)2
)

, (3)

occupies the lower half-space for y ≤ 0, where g is the gravitational acceleration in
the negative y−direction. The interface between the fluids is assumed to be well
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defined and initially flat and forms the plane y = 0. In fact, a sharp interface
between the two fluids may not exist. Rather, there is an ill-defined transition
region in which the two fluids intermix. The width of this transition zone is usually
small compared with the other characteristic length of the motion; hence, for the
purpose of the mathematical analysis, we shall assume that the fluids are separated
by a sharp interface.

In a magneto-quasi-static system with negligible displacement current, Maxwell’s
equations in the presence of free electric surface currents are

∇. (µ(j)H(j)(t)) = 0 , j = 1, 2 (4)

∇×H(j)(t) = Jf (t), (5)

where the magnetic permeability for the j fluid phase is µ(j) and Jf (t) is the time-
dependent surface current vector. It is noted that, In the presence of the free-
electric surface currents on the fluid interface, the initial tangential component
for the magnetic field could not be continuous across the interface between the
fluids, so that H(1)(t)−H(2)(t) = Jf (t). It is convenient to introduce the following
equilibrium relations:

H
(1)
0 =

H

H − 1
J0 , and H

(2)
0 =

1

H − 1
J0 (6)

where His the stratified magnetic field intensity H ≡ H
(1)
0

H
(2)
0

and J0 is defined as

H
(1)
0 −H

(2)
0 = J0. (7)

In accordance with the validity of the quasi-static approximation, a stream function
ψ(x, y, t) can be introduced so that the total magnetic field is given by

H(1)(t) =

(

∂ψ(1)

∂y
+

H

H − 1
(1 + ε cos̟ t)J0

)

ex −
(

∂ψ(1)

∂x

)

ey, (8)

H(2)(t) =

(

∂ψ(2)

∂y
+

1

H − 1
(1 + ε cos̟ t)J0

)

ex −
(

∂ψ(2)

∂x

)

ey. (9)

Clearly, the stream function ψ(x, y, t) guarantees that (5) is satisfied, while the
remaining bulk equation (∇×H(t) = 0) shows that the function ψ satisfies Laplace’s
equation

∇2φ(i) = 0. (10)

It is convenient to insure that ψ(x,y,t) is a finite function presented due to the
interface disturbance. Far from the interface its influence is neglected. Therefore
both the partial derivative for ψ(x,y,t), with respect to x and y, must vanish as
y → ± ∞. In other words, far from the interface, the stream functions are assumed
to have

ψ(1)(x,+∞, t) = ψ(1)
∞ and ψ(2)(x,−∞, t) = ψ(2)

∞ (11)

where ψ
(1)
∞ and ψ

(2)
∞ are two different finite constants.
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Fluid flow through a porous medium is often given by the phenomenological
Darcy equation. Thus, the equations governing two-dimensional motion of an in-
compressible fluid through porous medium are (see [13], [16] and [34]).

ρ

[

∂V

∂t
+ (V .∇)V

]

= −∇P − ρgey − η

q
V , (12)

associated with the continuity equation

∇ · V = 0, (13)

where V is the fluid velocity vector. The function P refers to the fluid pressure.
The parameters ρ, η and q are the fluid density, viscosity and permeability of the
medium respectively. The permeability q describes the ability of the fluid to flow
through the porous medium.

Introducing the potential velocity ∇φ(x, y, t) so that the total fluid velocity is
given by

V (j)(x, y, t) = U
(j)
0 ex −∇φ(j)(x, y, t). (14)

Based on the condition of the velocity field be constant at infinity, it follows that the
velocity potential tends to constant values as y → ± ∞. This requirement on the
potential is expressed as the function ∇φ(j)(x,±∞, t) → 0. Expression (14) should
be substituted into the above system and an equivalent boundary value problem to
solve for the function φ(x, y, t). This will be obtained later. In view of the continuity
equation (13) the following Laplace equation will be imposed:

∇2φ(j)(x, y, t) = 0. (15)

Inserting (14) into equation of motion (12) we get
(

ρ(j) ∂

∂t
+ ρ(j)U

(j)
0

∂

∂x
η(j)q−1

j

)

∇φ(j)(x, y, t) =

∇P (j)(x, y, t) + η(j)U
(j)
0 q−1

j ex + ρ(j)g e
y
. (16)

At the equilibrium state we have φ(j) = 0 and P (j) = P
(j)
0 , hence

∂P
(j)
0

∂x
+ η(j)U

(j)
0 q−1

j = 0 and
∂P

(j)
0

∂y
+ ρ(j)g = 0 (17)

The solutions for these partial differential equations are

π
(i)
0 (x, y, t) = −ρ(i)gy − η(i)

q(i)
V

(i)
0 x+ λ

(i)
0 (x, y, t) , i = 1, 2. (18)

where λ
(i)
0 (x, y, t) is the constant of integration. The balance of the normal stress

tensor at the interface leads to

C
(2)
0 − C

(1)
0 =

1

2

[

µ(1)(H
(1)
0 +H

(1)
00 cos̟t)2 − µ(2)(H

(2)
0 +H

(2)
00 cos̟t)2

]

. (19)

It can be noted that the perturbed quantities φ(x, y, t) and P (x, y, t) are related by

P (j)(x, y, t) =

(

ρ(j) ∂

∂t
+ ρ(j)U

(j)
0

∂

∂x
η(j)q−1

j

)

φ(j)(x, y, t). (20)
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3. Boundary Conditions

The solutions for the velocity potential φ(j)(x, y, t) and the magnetic stream function
ψ(j)(x, y, t) have to satisfy the boundary conditions, so that, if we assume that the
interface between the two fluids is given by S(x, y, t) = y−ξ(x, t) = 0, the linearized
boundary conditions at the interface y = ξ(x, t) are listed below ([9] and [35]):

(i) At the surface of separation, the physical conditions to be satisfied for the
stress are that the tangential component is zero and the normal one is discon-
tinuous under the influence of the surface tension (Batchelor [36]). Therefore,
the normal component of the stress tensor σij is related to the surface tension
by [37]

(

σ
(1)
jy − σ

(2)
jy

)

ny = −njσT ∇2ξ, y = ξ, (21)

where σT is the surface tension coefficient, nx and ny are, respectively, the hor-
izontal and vertical components for the unit normal vector n to the interface,
in which

n =
∇s
|∇s| . (22)

The stress tensor σij is given by

σij = −Pδij + µHiHj − 1
2µH

2δij + η
(

∂Vi

∂xj
+

∂Vj

∂xi

)

, (23)

where δij is the Kronecker’s delta.

(ii) An equation expressing the assumed material character of the dividing surface
is required. Such an equation is

∂ξ

∂t
= −∂φ

(j)

∂y
− ∂ξ

∂x
U

(j)
0 , j = 1, 2 , y = ξ , (24)

where U0 is the equilibrium horizontal velocity.

(iii) The continuity of the normal component of the magnetic displacement at the
surface of separation.

n ·
(

µ(1)H(1)(t) − µ(2)H(2)(t)
)

= 0 , y = ξ . (25)

(iv) Owing to the presence of free electric surface currents on the interface, the
tangential component of the magnetic field is discontinuous. At this end,
we are in need to use another boundary condition instead of this condition.
Therefore the continuity of the tangential stress is used (Melcher [9]). This
requires

(

σ(1)
xy − σ(2)

xy

)

ny +
(

σ(1)
xx − σ(2)

xx

)

nx = 0 , y = ξ . (26)

Thus, the appropriate magnetic boundary conditions here are reduced, re-
spectively, to

∂ξ

∂x

1

H − 1

(

µ(1)H − µ(2)
)

(J0 + J00 cos̟ t) +

(

µ(1) ∂ψ
(1)

∂x
− µ(2) ∂ψ

(2)

∂x

)

= 0,
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y = 0 , (27)

(

µ(1)H
∂ψ(1)

∂x
− µ(2) ∂ψ

(2)

∂x

)

1

H − 1
(J0 + J00 cos̟ t) +

∂ξ

∂x

(

µ(1)H2 − µ(2)
) 1

(H − 1)2
(J0 + J00 cos̟ t)

2
+ (28)

2
∂2

∂x∂y

(

η(1)φ(1) − η(2)φ(2)
)

= 0 ,

The above boundary conditions represented here are prescribed at the interface
y = ξ(x, t). As the interface is deformed all variables are slightly perturbed from
their equilibrium values. Because the interfacial displacement is small, the boundary
conditions on perturbation interfacial variables need to be evaluated at the equilib-
rium position rather than at the interface. Therefore, it is necessary to express all
the physical quantities involved in terms of Maclaurin series about y = 0.

4. Linear Perturbation and derivation of the Characteristic Equation

To perform a linear stability analysis, the interface is perturbed by a sinusoidal
wave of small amplitude,

ξ(x, t) = γ(t) eikx, (29)

where the wavenumber k is assumed to be real and positive, i =
√
−1 and γ is

an arbitrary function of time, which determines the behaviour of the amplitude of
the disturbance of the interface. Perturbation bulk variables are functions of both
the horizontal and vertical coordinates as well as time. The deformation in the
interface y = 0 is due to the perturbation about the equilibrium values for all the
other variables. The equations of motion and the boundary conditions mentioned
previously will be solved for these perturbations under the assumption that the
perturbations are small, that is, all equations of motion and boundary conditions
will be linearized in the perturbed quantities. The form of the horizontal variation
for all the other perturbed variables will be the same as the displacement description
(29).

In accordance with the interface deflecting given by (29) and in view of a stan-
dard Fourier decomposition, we may similarly assume that the bulk solutions are
of the form

φ(j)(x, y, t) = φ̂(j)(y, t)eikx, (30)

P (j)(x, y, t) = P̂ (j)(y, t)eikx, (31)

ψ(j)(x, y, t) = ψ̂(j)(y, t)eikx. (32)

As is customary in hydrodynamic stability analysis [1], we insert (30) into Laplace
equation (15), the resulting solutions in view of the boundary condition (25) yield

φ(1)(x, y, t) =
1

k

(

dγ

dt
+ ikU

(1)
0 γ

)

eikx−ky , y > 0 , (33)

φ(2)(x, y, t) = −1

k

(

dγ

dt
+ ikU

(2)
0 γ

)

eikx+ky , y < 0 . (34)
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Inserting (33) and (34) into (20), accordingly, the pressure distribution in the two
fluid phases is

P (1)(x, y, t) =
1

k

[

ρ(1) d
2γ

dt2
+

(

2ikρ(1)U
(1)
0 + η(1)q−1

1

) dγ

dt
+

kU
(1)
0

(

iη(1)q−1
1 − kρ(1)U

(1)
0

)

γ
]

eikx−ky ,

y > 0 , (35)

P (2)(x, y, t) = −1

k

[

ρ(2) d
2γ

dt2
+

(

2ikρ(2)U
(2)
0 + η(2)q−1

2

) dγ

dt
+

kU
(2)
0

(

iη(2)q−1
2 − kρ(2)U

(2)
0

)

γ
]

eikx+ky,

y < 0 . (36)

Substituting (32) into Laplace equation (10), the resulting solution in view of the
above boundary conditions (27) and (28) gives

ψ(1)(x, y, t) =
1

µ(1) (J0 + J00 cos̟ t)

{

2
(

η(1) − η(2)
) dγ

dt
+

[

2ik
(

η(1)U
(1)
0 − η(2)U

(2)
0

)

−

µ(1)H

H − 1
(J0 + J00 cos̟ t)

2

]

γ

}

eikx−ky (37)

ψ(2)(x, y, t) =
1

µ(2) (J0 + J00 cos̟ t)

{

2
(

η(1) − η(2)
) dγ

dt
+

[

2ik
(

η(1)U
(1)
0 − η(2)U

(2)
0

)

−

µ(2)

H − 1
(J0 + J00 cos̟ t)

2

]

γ

}

eikx+ky (38)

In what follows we shall derive the characteristic equation governing the interfacial
waves. Inserting (33)–(38) into the normal stress tensor (21), to replace the depen-
dent on the potential velocity φ(j), the magnetic stream function ψ(j) and the fluid
pressure function P (j) by their dependent on the amplitude γ(t), finally we obtain

(ρ(1) + ρ(2))
d2γ

dt2
+

[( −4k2

H − 1
+ q−1

1

)

η(1) +

(

4k2 H

H − 1
+ q−1

2

)

η(2)+

2ik
(

ρ(1)U
(1)
0 + ρ(2)U

(2)
0

)] dγ

dt
+

[

k3σT − kg(ρ(1) − ρ(2))−

k2
(

ρ(1)U
(1)
0

2
+ ρ(2)U

(2)
0

2)

+ ik

( −4k2

H − 1
+ q−1

1

)

U
(1)
0 η(1)+ (39)

ik

(

4k2 H

H − 1
+ q−1

2

)

U
(2)
0 η(2)+

k2

(H − 1)2

(

µ(1)H2 + µ(2)
)

(J0 + J00 cos ̟t)2
]

γ = 0 .
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Equation (39) is a complicated damped Mathieu equation. In which complex
coefficients are included. This equation represents the dispersion equation which
governs the amplitude of the surface waves propagating between two moving Darcian
fluids. This equation has a growth rate solution, the stability analysis being rather
complex. To economize this complexity, a mathematical simplification is useful here
to overcome the complexity. This simplification will be based on the assumption
that the fluids have weak viscous effects. In dealing with the periodic solutions
of the Mathieu’s equation (39), a stability analysis can be performed using the
marginal state treatment. Marginal stability holds trivially in the inviscid case. To
obtain the marginal state for moving viscous flow, a reduced form of the Mathieu
equation (39) is needed.

5. Stability Analysis in View of Weak Viscous Effect

In the light of weak viscous effects, the complex equation (39) can be put in a
reduction form. This can be accomplished in the following manner.

Owing to the properties of the viscous problem considered here in which the
viscous problem is regarded as a slightly departure from the inviscid case, we can
easily verify that (η = δη̂), then the above system has the form α + δ β = 0;
where α refers to the inviscid problem, in which it is regarded as a function of the

fluid density ρ(j), the fluid velocity U
(j)
0 , magnetic force and the term β refers to

viscous contributions, in which it is a function of the fluid viscosity η(j) and porous
permeability qj . The artificial parameter δ is a small dimensionless quantity, which
measures viscosity. Owing to linearly independence in δ we have α = 0 and β = 0.
According to this fact, the system (39) will be separated, respectively, into the
following two parts:

(

ρ(1) + ρ(2)
) d2γ

dt2
+

[

2ik
(

ρ(1)U
(1)
0 + ρ(2)U

(2)
0

) dγ

dt
+

[

k3σT − kg
(

ρ(1) − ρ(2)
)

− k2
(

ρ(1)U
(1)
0

2
+ ρ(2)U

(2)
0

2)

+

k2

(H − 1)2

(

µ(1)H2 + µ(2)
)

(J0 + J00 cos ̟t)
2

]

γ = 0 , (40)

[( −4k2

H − 1
+ q−1

1

)

η̂(1) +

(

4k2H

H − 1
+ q−1

2

)

η̂(2)

]

dγ

dt
+

ik

[( −4k2

H − 1
+ q−1

1

)

U
(1)
0 η̂(1) +

(

4k2H

H − 1
+ q−1

2

)

U
(2)
0 η̂(2)

]

γ = 0 . (41)

Equation (40) refers to the behaviour of the wave propagation between two inviscid
fluids in the presence of free electric surface currents. In the other side, equation (31)
represents the viscous correction of the inviscid fluids. Combining these equations
yields the following Mathieu equation:

d2γ(t)

d t2
+

[

ω2 +Q (J0 + J00 cos̟ t)
2
]

γ(t) = 0 , (42)
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where

Q =
k2

(

µ(1)H2 + µ(2)
)

(H − 1)2(ρ(1) + ρ(2))
,

ω2 =
1

(ρ(1) + ρ(2))

{

k3σT − kg(ρ(1) − ρ(2)) − k2
(

ρ(1)U
(1)
0

2
+ ρ(2)U

(2)
0

2)

+

2k2
(

ρ(1)U
(1)
0 + ρ(2)U

(2)
0

)

[

4k2

H − 1

(

η(2)U
(2)
0 H − η(1)U

(1)
0

)

+

(

η(1)U
(1)
0 q−1

1 + η(2)U
(2)
0 q−1

2

)]

×
[

4k2

H − 1

(

η(2)H − η(1)
)

+
(

η(1)q−1
1 + η(2)q−1

2

)

]−1
}

(43)

It should be noticed that equation (42) represents the Mathieu equation without
the viscous damping term. The viscosity is included in the coefficient ω2 for the
variable γ(t) and should affect the stability behaviour. Here, one can notice that
equation (43) represents the dispersion relation that is satisfied in the absence of
the applied magnetic fields. Clearly, a singularity occurs owing to the vanishing
of the dominator of ω2. This singularity arises at a critical value of the stratified
magnetic field Hc given by

HC =
(4k2 + q−1

1 )η + q−1
2

(4k2 + q−1
2 ) + ηq−1

1

, (44)

where η is the stratified viscosity η = η(1)

η(2) . This is the relation between the stratified

magnetic field and the stratified viscosity.
If the critical value HC is excluded, the wave train solution for the static mag-

netic field can be achieved. This can be accomplished when the term ω2 + QJ2
0 is

positive. Thus, we need

J2
0 > J∗ =

(H − 1)2

k2
(

µ(1)H2 + µ(2)
)

{

kg
(

ρ(1) − ρ(2)
)

− k3σT +

k2
(

ρ(1)U
(1)
0

2
+ ρ(2)U

(2)
0

2)

− 2k2
(

ρ(1)U
(1)
0 + ρ(2)U

(2)
0

)

×
[

4k2

H − 1

(

η(2)U
(2)
0 H − η(1)U

(1)
0

)

+
(

η(1)U
(1)
0 q−1

1 + η(2)U
(2)
0 q−1

2

)

]

×
[

4k2

H − 1

(

η(2)H − η(1)
)

+
(

η(1)q−1
1 + η(2)q−1

2

)

]−1
}

> 0 . (45)

Another dramatic aspect of the stability behaviour can be found when the field
frequency ̟ is presented. In dealing with the case of oscillating the magnetic field,
we assume that the static part J0 has a zero value. At this stage, stability occurs
whence the following inequality is satisfied [38]:

J4
00Q

2 + 16(̟2 − ω2)QJ2
00 + 32ω2(̟2 − ω2) > 0 . (46)
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Namely
(J2

00 − J∗

1 )(J2
00 − J∗

2 ) > 0 , (47)

where

J∗

1,2 =
8

Q

[

−(̟2 − ω2) ±
√

(̟2 − ω2)(̟2 − 3
2ω

2)

]

. (48)

This stability criterion reduces to the problem of the bounded regions of the Mathieu
functions, as given in [39]. The transition curves J∗

1 and J∗
2 should start from the

point H = 1 and from the point satisfying ̟2 = ω2, which represents the resonance
point. There exists another starting point satisfying ω2 = 0. Therefore, in the
(J2

00,H)-plane, the transition curves will intersect the H-axis at three points, given
by H1 = 1,

H2 =
[

k2σT − g
(

ρ(1) − ρ(2)
)

−̟2
(

ρ(1) + ρ(2)
)

− k
(

ρ(1)U
(1)
0

2
+ ρ(2)U

(2)
0

2)]

×
[(

4k2 + q−1
1

)

η + q−1
2

]

+ 2k
(

ρ(1)U
(1)
0 + ρ(2)U

(2)
0

)

×
[

(

4k2 + q−1
1

)

ηU
(1)
0 + U

(2)
0 q−1

2

]

×
{[

k2σT − g(ρ(1) − ρ(2)) −̟2(ρ(1) + ρ(2)) − k
(

ρ(1)U
(1)
0

2
+ ρ(2)U

(2)
0

2)]

×
[(

4k2 + q−1
2

)

+ ηq−1
1

]

+

2k
(

ρ(1)U
(1)
0 + ρ(2)U

(2)
0

) [

(

4k2 + q−1
2

)

U
(2)
0 + ηU

(1)
0 q−1

1

]}−1

, (49)

H3 =
{[

k2σT − g(ρ(1) − ρ(2)) − k
(

ρ(1)U
(1)
0

2
+ ρ(2)U

(2)
0

2)]

[(

4k2 + q−1
1

)

η + q−1
2

]

+ 2k
(

ρ(1)U
(1)
0 + ρ(2)U

(2)
0

)

×
[

(

4k2 + q−1
1

)

ηU
(1)
0 + U

(2)
0 q−1

2

]}

×
{[

k2σT − g
(

ρ(1) − ρ(2)
)

− k
(

ρ(1)U
(1)
0

2
+ ρ(2)U

(2)
0

2)]

[(

4k2 + q−1
2

)

+ ηq−1
1

]

+ 2k
(

ρ(1)U
(1)
0 + ρ(2)U

(2)
0

)

×
[

(

4k2 + q−1
2

)

U
(2)
0 + ηU

(1)
0 q−1

1

]}−1

. (50)

It is well known that free electric surface currents density disappear from the fluid
interface whence the stratified magnetic field has the exact unit value. From the
above calculations one can found that the free electric surface currents density will
disappear from the interface at another two values for the stratified magnetic field,
namely H2 and H3. These two values have not been found in the case of the absence
of the field frequency ̟.

5.1. Stability Diagram and Numerical Estimation

In graphing the stability picture at this scope, numerical estimation is made for the
stability condition (45), in the static case, and the stability criteria (46) to assess
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the implications of the field frequency. Therefore, calculations are done for the
transition curves J∗ and J∗

1,2. Before going into the details of these calculations,
it is convenient to seek all the physical parameters in non-dimensional form. We

introduce the characteristic length L of order
(

η(2)2

ρ(2)2g

)

1
3

and the characteristic time

T of order
(

η(2)

ρ(2)g2

)
1
3

. Other dimensionless quantities are given by

k =
k∗

L
, qj = q∗jL

2 , σT = σ∗

T

(

ρ(2)gL2
)

, U
(j)
0 = U

∗(j)
0

L

T

and

J(t) = J∗(t)

√

Lρ(2)g

µ(2)
.

The superposed ∗ will be omitted later for simplicity and ρ = ρ(1)

ρ(2) , η = η(1)

η(2) are

used.
The stability diagram that displayed in Figure 1 is made by a plot of transition

curve J∗ according (45). The electric surface current coefficient J2
0 is plotted as a

function of the stratified magnetic field H. The graph of the plane (J2
0 −H) refers to

a stable zone characterized by the symbol S bounded by two unstable regions which
are characterised by the symbol U . The stable zone starts from the point H=1. At
the exact H =1, the stratified field plays a stabilizing role in the absence of J2

0 . A
destabilizing influence of the field appears in the neighbourhood of H = 1. This
stabilizing influence increases as J2

0 increases. This shows the stabilizing influence
of the presence of J2

0 in the neighbourhood of H = 1.

Figure 1 Influence of variation of the velocity U
(1)
0 on the stability diagram. The graph is for J2

0
versus H. The graph construction is based on condition (45). The calculations are made for the
system having k = 0.1, ρ = 1.2, η = 1.2, µ = 0.04, q−1

1 = 1, q−1
2 = 1 and σT = 12
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The stability examination, for the influence of the fluid velocity is included in

the present graph in which some curves are drawing to variation of U
(1)
0 , at fixing

the velocity U
(2)
0 . Inspection of the stability diagram reveals that the increase in the

upper velocity has contracted the width of the stable zone. The same conclusion

can be found if we fixe the upper velocity U
(1)
0 while the lower velocity U

(2)
0 has

some variation. These calculations show that the increase in the fluid velocities
plays a destabilizing role.

The effect of the viscosity ratio η, in the presence of free electric surface currents,

is shown in Figure 2a) for U
(1)
0 > U

(2)
0 and in Figure 2b) where U

(1)
0 < U

(2)
0 . In

Figure 2a), the increase in the viscosity ratio η has contracted the width of the
stable zone. Similar behaviour is observed for increasing the parameter q−1

1 as
shown in Figure 3a). In the other side, in Figure (2-b), the increase in η leads to
an increase in the width of the stable zone. Similar effects appear for increasing
q−1
1 as illustrated in Figure 3b). Therefore, there are two different conclusions for

increasing the viscosity parameter η and the permeability parameter, a destabilizing

influence for U
(1)
0 > U

(2)
0 and a stabilizing effect for U

(1)
0 < U

(2)
0 . This conclusion

has not been observed before.

To screen the influence of the field frequency ̟ on the stability criteria, numer-
ical estimation has been carried out for the transition curves J∗

1 and J∗
2 according

to (36). The results of the calculation are displayed in Figures 4–8. The stability
diagram for this calculation has been displayed in the plane (J2

00 − H). In this
plane two stable regions S0 and S̟lie between three unstable regions U . The first
stable zone S0 starts from the pointH =1. It can be recognized that the stable
zone S0 correspond to the stable zone appearing in Figure 1 and Figure 2a) and
b), in the absence of the field frequency. The second stable region S̟ is due to the
presence of the field frequency ̟. This stable region lies between the two points H2

and H3. The presence of this region indicates the stabilizing role of oscillating the
magnetic field. It appears from the stability diagram that an increase in J2

00 leads
to an increase in the size of this stable region, so that the stratified magnetic field
is more strongly stabilizing in the presence of the electric free surface currents. In
the absence of J2

00, as shown in Figures 4–7, the stratified field plays a destabilizing
role for H > H2(̟). Inspection of these graphs show that there is a singularity for
the transition curves. A major instability arises when H = HC , which lies between
the two stable regions S0 and S̟. In this graph, the critical value of the stratified
magnetic field is HC = 1.1290323. The occurrence of this singularity is dependent
on the stratified viscosity η, the porous permeability q−1

j and the wavenumber k,
while it is independent of both fluid velocity and the field frequency. Very much
larger values of the electric surface currents are required to suppress this unstable
case. The presence of electric surface currents has constrained this destabilizing
role. In contrast with the stable region S0, the stable region S̟ is depending on
the field frequency ̟.
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Figure 2 a): Influence of the viscosity ratio on the stability picture for the same system as in

Fig. 1, where ρ = 0.5, U
(1)
0 = 3 and U

(2)
0 = 1; b): the same as in Fig. 2a), but U

(1)
0 = 1 and

U
(2)
0 = 3
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Figure 3 a): Influence of the variation of the porous permeability parameter for the same system
as in Fig. 2a), but η = 1.2; b): for the same system as in Fig. 2b)
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Figure 4 Influence of the field frequency ̟ on the stability behavior. The calculations are made
for the stability condition (46) for the system having k = 1, ρ = 0.7, η = 1.2, µ = 0.4, ̟ = 2,

q−1
1 = 1, q−1

2 = 1, U
(1)
0 = 3, U

(2)
0 = 1 and σT = 20

Examination of increasing the field frequency has been displayed in Figure 4.
Inspection of this graph shows that an increase in the frequency ̟ increases the size
of stable region S̟ and shifts it into the direction of increasing H. Thus conclude
that the presence as well as the increase of the field frequency plays a stabilizing
role in the stability behaviour.

The influence of the increase of fluid velocity U
(1)
0 on the stability behaviour

in the presence of the frequency ̟ is displayed in Figure 5. The graph shown in

the plane (J2
00 −H) represents four consequent values of U

(1)
0 with fixing the lower

velocity U
(2)
0 to unit value so that U

(1)
0 > U

(2)
0 . It is shown that the increase of the

upper velocity leads to a very small decrease in the region S0 and an increase in the
stable region S̟ associates with a shift towards the direction of increasing H. This
conclusion has not been found in the absence of the frequency ̟. Now, we have

two roles for increasing U
(1)
0 in the stability picture. These roles are a very small

destabilizing effect in the region S0 and a stabilizing influence in the stable region
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Figure 5 For the same system as in Fig. 4 where ̟ = 2

Figure 6 For the same system as in Fig. 5
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Figure 7 For the same system as in Fig. 5

Figure 8 For the same system as in Fig. 5
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S̟. This phenomenon is known as the dual role in the stability behaviour. When

the lower velocity U
(2)
0 has increased under the condition U

(1)
0 > U

(2)
0 a destabilizing

influence is found as shown in Figure 6.

The examination of increasing the stratified viscosity on the stability picture has
been illustrated in Figure 6. Four consequent values for η are used for the sake of
investigation. As η is increased the width of the stable area S0 increases, while the
width of the stable S̟ contracts in width. Thus, two different roles are found for
increasing η, a stabilizing influence in the region labeled by S0 and a destabilizing
effect appears in the region of S̟ associated with small shift towards the direction
of increasing H. Therefore the viscosity parameter plays a dual role in the stability
criteria in the presence of the field frequency ̟.

Some variation of the porous permeabilities is assumed in the presence of os-
cillating the magnetic field. Numerical results are displayed in Figure 7 for four
consequent values of q−1

1 with fixing q−1
2 to the unit value. Inspection of the graph

reveals that as the porous permeability q−1
1 has been increased the stable area S̟

shifts to the direction of decreasing the axis-H associated with a contraction in
the width. The same observation is found when q−1

2 increase instead of q−1
1 . This

means that the decrease in qj plays a destabilizing influence. This shows that the
increase in the resistance force (η(j)/qj) plays a destabilizing influence in the sta-
bility behaviour under the influence of the periodic magnetic field in the presence
of free electric surface currents.

6. Alternative Scope for Marginal Stability Analysis

In this section we shall discuss another profile for the marginal stability. Before
discussing the stability analysis in the present case, it is convenient to eliminate the
imaginary damping terms from the original Mathieu equation (39) by making use
of the following transformation:

γ(t) = Θ(t) exp



−
ik

(

ρU
(1)
0 + U

(2)
0

)

t

ρ+ 1



 . (51)

Then equation (39) reduces to

d2Θ

dt2
+A

dΘ

dt
+

[

Ω2 + iλ+Q (J0 + J00 cos̟ t)
2
]

Θ = 0, (52)

where

A =
1

ρ+ 1

[( −4k2

H − 1
+ q−1

1

)

η +

(

4k2 H

H − 1
+ q−1

2

)]

,

Ω2 =
k

ρ+ 1

(

k2σT − ρ+ 1
)

−
k2ρ

(

U
(1)
0 − U

(2)
0

)2

(ρ+ 1)2
,

λ =
k

(

U
(1)
0 − U

(2)
0

)

ρ+ 1

[

4k2

H − 1
(ρH + η) + ρq−1

2 − ηq−1
1

]

.
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Clearly the marginal stability can be obtained when the parameters A and λ vanish.

This can be accomplished for absent U
(j)
0 or whence the two fluids move with the

same velocity, in addition the damping term vanishes at the critical value HC .
In view of the critical value (44) the damped term A will be absent from the

Mathieu equation (52). Moreover, in the absence of the fluid velocity, equation (52)
then reduces to

d2Θ

dt2
+

[

Ω2
0 +Q0(J0 + J00 cos̟t)2

]

Θ = 0 , (53)

where Ω0 = lim
U

(j)
0 →0

Ω and Q0 = lim
H→HC

Q. Hence, we have

Q0 =
µ

[

(4k2 + q−1
1 )η + q−1

2

]2
+

[

(4k2 + q−1
2 ) + ηq−1

1

]2

16k2(η − 1)2(ρ(1) + ρ(2))
.

Equation (53) is well known as the canonical form of Mathieu’s equation which
is a linear differential equation with periodic coefficients. Equations similar to this
equation appear in many problems in physics and applied mathematics such as sta-
bility of a transverse column subjected to a periodic longitudinal load, stability of
periodic solutions of a nonlinear conservative system, electromagnetic wave propa-
gation in a medium with periodic structure, and the excitation of certain electrical
systems. The solutions of the Mathieu equation can be, under certain conditions,
periodic where the system becomes stable. The condition for the periodic Mathieu
functions depends on the relation between the parameters Ω2

0 and Q0 [39]. The
(Ω2

0 −Q0)-plane is divided into stable and unstable regions bounded by the charac-
teristic curves of Mathieu functions. The general solution of equation (53) is stable
if the point (Ω2

0, Q0) in the (Ω2
0 − Q0)-plane lies in a stable region, otherwise it is

unstable [39].
The stability behaviour in the static magnetic field can be discussed from equa-

tion (53) in the absence of the periodic terms, or when the parameter J00 → 0,
the stability analysis then requires that Ω2

0 +Q0J
2
0 > 0, which yields the following

condition:

J2
0 > J̃ =

16k2(η − 1)2 (ρ+ 1)
(

ρ− 1 − k2σT

)

µ
[

(4k2 + q−1
1 )η + q−1

2

]2
+

[

(4k2 + q−1
2 ) + ηq−1

1

]2 . (54)

This is the relation between the stratified viscosity η and the surface currents coef-
ficient J0. This relation occurs at the specific value for the stratified magnetic field.
It is clear that surface currents will disappear from the interface whence η = 1 (i.e.,
η(1) = η(2)). Inspection of the above relation (54) shows that stability reveals for
ρ < 1, in other words, whence k2 > ρ

σT +1 .
The contributions of the field frequency can be achieved in the case of non-

vanishing the parameter J00. Thus in the absence of the static term (J0 → 0),
stability of (53) occurs when the following inequality is satisfied:

J4
00Q

2
0 + 16(̟2 − Ω2

0)Q0J
2
00 + 32Ω2

0(̟
2 − Ω2

0) > 0 . (55)

It is observed that this condition is trivially satisfied when ̟2 ≥ Ω2
0, for arbitrary

Q0 and J2
00. In terms of the coefficientJ2

00, the above stability condition (55) takes
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the form
(J2

00 − J̃1)(J
2
00 − J̃2) > 0 , (56)

where

J̃1,2 =
8

Q0

[

−
(

̟2 − Ω2
0

)

±
√

(̟2 − Ω2
0)

(

̟2 − 3

2
Ω2

0

)

]

. (57)

The stable regions are characterized by the following conditions:

J2
00 > J̃1 and J2

00 > J̃2 ; J̃1 > J̃2 . (58)

It is clear that the two transition curves J̃1 and J̃2 are intersected at the point
η = 1, in the plane (J2

00 − η). From Floquet theory [39], the region bounded by
the two branches for the transition curves J̃1 and J̃2 is the unstable region; the
area outside these curves is the stable region. The stability behaviour at the exact
critical value of the stratified magnetic field is amplified in Figures 8 and 9. The
transition curves (57) are calculated and the stability diagram shows the variation
of η versus J2

00. The results of increasing the field frequency ̟ and the inverse
of the porous permeability q−1

1 on the stability criteria are shown respectively in
Figures 8 and 9. In these graphs a stable zone starting from the point (1, 0) in the
plane (J2

00 − η). The stable zone is surrounded by an unstable area. The width of
the stable zone increases as the values of J2

00 is increased. This shows the stabilizing
influence of the free surface current density at the critical stratified magnetic field
HC .

Figure 9 Influence of the field frequency ̟ on the stability configuration at the chimerical mag-
netic ratio HC . The computations are made for the stability criteria (55) for a system having
ρ = 0.7, µ = 0.5, q−1

1 = 1, q−1
2 = 1, sigmaT = 10 at the fixed k = 1
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In Figure 8 four consequent values of ̟ are considered. It can be noticed that
the stable zone that lies at η = 1 increases in width as ̟ is increased. This shows
the stabilizing influence of the field frequency. The same role was observed before
in Figure 4 for the un-damped Mathieu equation (32). Another conclusion was
observed in the presence of the damped term A in which the increase of ̟ has a
destabilizing influence.

In Figure 9, we repeat the plot of Figure 8 by fixing the field frequency ̟ to
the value ̟ = 2 but the permeability q−1

1 has some variation. It is seen that
the stable zone increases in width as q−1

1 is increased. This shows the stabilizing
influence of increasing the parameter q−1

1 . The same behaviour was observed before
in Figure 3b).

7. Damped Effects in the Stability Behaviour

Away from the marginal stability analysis other dramatic changes in the stability
behaviour can be obtained. When the growth rate solution is presented, a solution
of the form γ = exp(σ0 + iω0)t occurs. Stability will depend on the sign of σ0(the
real part). If it is positive then the amplitude of the disturbance increases with
time, and the flow is unstable; if it is negative then the flow is stable; and if it has
a zero value then there is marginal stability.

7.1. Stability Profile for Fluids Streaming with the Same Velocities

In the limiting case, for fluids having the same velocities (λ→ 0), the above charac-
teristic equation (52) reduces to the following damped Mathieu equation with real
coefficients:

d2Θ

dt2
+A

dΘ

dt
+

[

Ω2
0 +Q(J0 + J00 cos̟t)2

]

Θ = 0 . (59)

Equation (59) represents the case of the Rayleigh-Taylor problem for the Darcian
fluids. This equation has, in general, a growth-rate solution. Marginal stability
requires positive values of the damped term. In the other side, the periodic solution
arises when the damped term vanishes.

For non-zero the damped term A and in a pure static magnetic field, equation
(59) reduces to

d2Θ

dt2
+A

dΘ

dt
+

(

Ω2
0 +QJ2

0

)

Θ = 0 . (60)

This is a linear differential equation with constant coefficients. For the growth rate
solution, of the form γ = exp(σ0 + iω0)t, both σ0 and ω0 is real constants and
satisfies the following equations:

σ2
0 − ω2

0 +Aσ0 + (Ω2
0 +QJ2

0 ) = 0 , 2σ0 +A = 0 .

Elimination of the parameter σ0 yields

ω2
0 = Ω2

0 +QJ2
0 − 1

4A
2 . (61)

The assumption that ω0 is real imposes the following stability condition:

Ω2
0 +QJ2

0 − 1
4A

2 > 0 , (62)
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with the necessary condition that A is positive. Thus the region of stability in the
static case is given by

J2
0 > J∗∗ =

1

k2(µH2 + 1)

{

1

4(ρ+ 1)

[

4k2(H − η)+

(ηq−1
1 + q−1

2 )(H − 1)
]2 − k(H − 1)2

[

k2σT − (ρ− 1)
]

}

, (63)

where µ = µ(1)

µ(2) is used.

The presence of the damping term A in the stability analysis that is given
above leads us to estimate the contribution of the viscosity in the stability criteria.
Therefore a non-dimensional parameter η∗ is introduced so that η(j) = η∗η̃(j), and
then A = η∗Ã. The dependence of the transition curve J∗∗ with respect to η∗ is
given by

∂J∗∗

∂η∗
=
Ã2

2Q
η∗ . (64)

This means that the unstable region bounded by the curve J∗∗ increases in size
as η∗ is increased, which shows that an increase in the viscosity parameter has a
destabilizing influence.

For a non-zero the periodic coefficient J00 and the static part J0 is ignored,
equation (59) is reduced to

d2Θ

dt2
+A

dΘ

dt
+

(

Ω2
0 +QJ2

00 cos2̟t
)

Θ = 0 . (65)

There are many books that have dealt with equation (65) (see e.g. Grimshaw
[40]). The small and positive coefficient A is described as a function of the coefficient
of the period term. Grimshaw [40] examined, using a perturbation technique, the
first unstable region, which occurs near Ω2

0 = ̟2+ 1
4A

2− 1
2QJ

2
00. On the boundaries

of this unstable region, there is periodic solution of (65) of period 2π. The stability
condition is thus given by

3Q2J4
00 − 16(̟2 − Ω2

0)QJ
2
00 + 16(̟2 − Ω2

0)
2 + 16̟2A2 > 0 . (66)

Clearly, the disappearance of free electric surface currents from the fluid interface
occurs whence A → 0 and the field frequency ̟2 has the same value of Ω2

0. It
is clear that there is a critical value for which the damped term A is absent; this
critical value is given by (44). The relation HC occurs at the marginal stability
case. In other words, the relation (44) can be reformulated as

k2
C =

(H − 1)(ηq−1
1 + q−1

2 )

4(η −H)
. (67)

This means that disappearance of J2
00 will occur at a specific value of the wavenum-

ber as defined above by (67). This point is known as the resonance point which
occurs when ̟2 = Ω2

0.
The presence of a positive damped term has not altered the position of the

stability boundary for the un-damped Mathieu equation in the stability diagram in
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the (J2
00, k)-plane. For each fixed A > 0, in the (J2

00, k)-plane, there is a hyperbola
bounding the unstable region and does not contact the k−axis. These boundaries
are described by

J∗∗

1,2 =
4

3Q

[

2(̟2 − Ω2
0) ±

√

(̟2 − Ω2
0)

2 − 3̟2A2

]

. (68)

Hence the stability criteria (68) cab be satisfied whence

J2
00 > J∗∗

1 and J2
00 < J∗∗

2 ; J∗∗

1 > J∗∗

2 .

The two transition curves J∗∗
1 and J∗∗

2 will be calculated for some numerical values.
These two transition curves should bound an unstable region and be surrounded by
a stable area.

In the present calculations we show the plots in the plane (J2
00, k) for the case of

the Rayleigh-Taylor problem in the presence of the viscous damped coefficient A.
The results of the calculations for the transition curves (68) are shown in Figures 11–
13a), and b). In Figure 11 we examine the effect of the field frequency ̟ on the
stability criteria. Some consequent values of ̟ are considered and displayed in
the graph. It is noticed that the unstable region has shifted up associated with an
increase in its width as ̟ is increased. This shows the destabilizing influence of
increasing the field frequency ̟. Another observation was found in the previous
graph of Figure 4 in the case of moving the fluids.

The influence of the stratified viscosity η on the stability behaviour is the subject
of the graph of Figure 10. In this investigation two different roles are observed for
increasing the parameter η. It is seen that as η is increased from the value η = 1 to
the value η = 1.1, the width of the unstable region increases and moves down. This
means that the increase in η has a destabilizing influence. Maximum instability
occurs as η reaches the value η = 1.2. A continuous increase in η to the value 1.3
leads to a decrease the width of the unstable region and a shift up. When η has the
value 1.4, more decrease in the width has achieved and more moving up. Hence the
values of η > 1.2 play a stabilizing influence in the stability behaviour.

The examination of increasing the upper permeability parameter q1 has been
displayed in Figure 13a) and b) for some consequent values. In Figure 13a) the
examination is done for a specific value of the stratified viscosity having the value
η = 1.1. In Figure 13b) we repeated the same calculation of Figure 13a) but for
another fixed value for the stratified viscosity η = 1.4. It appears that the increase
in q−1

1 leads to an increase in the width of the unstable region where η = 1.1 and a
decrease in the width occurs whence η = 1.4. This means that the parameter q−1

1

plays a stabilizing role in Figure 13a) and a destabilizing role in Figure 13b). The
same conclusion is observed when we increase the lower permeability parameter q2.
Hence there are two different roles for the resistance force that has been achieved
in the present calculations.
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Figure 10 For the same system as in Fig. 9 for variation the porous permeability q−1
1

Figure 11 Represents the stability criteria (66) for a system having ρ = 0.7, η = 1.3, µ = 1.5,
̟ = 10, 20, 30, 40, q−1

1 = 1, q−1
2 = 1 and a fixed value for the magnetic field ratio H = 1.2
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Figure 12 For the same system as in Fig. 11 except that the field frequency has a fixed value
̟ = 10 and the viscosity ratio has some variation

7.2. Kelvin-Helmholtz Instability in the Presence of Damped Effects

The parameterλ of Mathieu equation (52) can vanish even when the velocity field

U
(1)
0 and U

(2)
0 are non-zero and having non-equal values. This can be accomplished

for a special value of the stratified magnetic field. This value is given by

HS =
ρq−1

2 − ηq−1
1 − 4k2η

(4k2 + q−1
2 )ρ− ηq−1

1

. (69)

At this special value equation (52) has a following simplified form:

d2Θ

dt2
+A∗

dΘ

dt
+

[

Ω2 +Q∗ (J0 + J00 cos̟ t)
2
]

Θ = 0, (70)

where A∗ = lim
H→HS

A and Q∗ = lim
H→HS

Q, hence, we have

A∗ =
η

η + ρ

(

4k2 + q−1
1 + q−1

2

)

,

Q∗ = −µ
[

ρq−1
2 − ηq−1

1 − 4k2η
]2

+
[

(4k2 + q−1
2 )ρ− ηq−1

1

]2

4(ρ+ 1)(ρ+ η)
[

(4k2 + q−1
2 )ρ− ηq−1

1

] .

For non-zero the damped term and in a pure static magnetic field, the region of
stability is given by

J2
0 > Jc =

1

Q∗

(
1

4
A2

∗ − Ω2) , (71)

which is the stability behaviour for the damping equation (70) as J00 → 0.
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Figure 13 Represents some consequence values for the parameter q−1
1 at a fixed value of η = 1.1

for the same system as in Fig.12; b): represents some consequence values for the parameter q−1
1

at a fixed value of η = 1.4 for the same system as in Fig. 12
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For a non-zero the periodic coefficient J00 and the static part J0 is ignored, the
stability condition is thus given by

3Q2
∗J

4
00 − 16(̟2 − Ω2)Q∗J

2
00 + 16(̟2 − Ω2)2 + 16̟2A2

∗ > 0 . (72)

Namely
(J2

00 − Ja)(J2
00 − Jb) > 0, (73)

Ja,b =
4

3Q∗

[

2(̟2 − Ω2) ±
√

(̟2 − Ω2)2 − 3̟2A2
∗

]

. (74)

The region lies between the two branches of Ja and Jb represents the destabilizing
region sandwiched in the stabilizing area.

Figure 14 Represents the stability criteria 71) for a system having ρ = 0.5, η = 1, µ = 0.6,

q−1
1 = 1, q−1

2 = 1, U
(2)
0 = 1, σT = 12

The dependence of the special value of the stratified magnetic field HS on the sta-
bility behaviour in the static case is shown in Figures 14, 15 and 16. The numerical
result has been done for the stability criteria (71). The transition curve in these
graphs participate the plane into stable and unstable regions. Inspection of the
stability diagram shows that the free electric surface currents will disappear from
the interface between the fluids for k = k1 and k = k2, where

k1 =

√

ηq−1
1 − ρq−1

2

4ρ
, (75)
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Figure 15 The same as in Fig. 14 except that U
(1)
0 = 3 and some variation for the viscosity ratio

is considered

Figure 16 Refers to the same system as in Fig.15 except that some consequence values of the
porous permeability is considered
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k4
2 − σT (η + ρ)2

4η2(ρ+ 1)
k3
2 +

[

1
2

(

q−1
1 + q−1

2

)

+
ρ(η+ρ)2

(

U
(1)
0 −U

(2)
0

)2

4η2(ρ+1)2

]

k2
2+

(ρ− 1)(η + ρ)2

4η2(ρ+ 1)
k2 +

(

q−1
1 + q−1

2

)2
= 0 . (76)

The examination of the variation of the velocity U
(1)
0 , the viscosity ratio η and the

permeability parameter q−1
1 on the stability criteria is displayed in Figures 14, 15

and 16 respectively. It appears that the increase in U
(1)
0 , η and q−1

1 decreases the
unstable region. It is seen that these parameters play of a stabilizing role at the
critical stratified magnetic field in the absence of the field frequency. Other different
behaviours are found for investigation in the presence oscillating the magnetic field.
The numerical computation for the stability criteria (72) is made and has been
illustrated in Figures 17, 18 and 19. The dependence on the variation of the velocity

U
(1)
0 on the stability behaviour is the subject of Figure 17. It appears that, in the

presence of the field frequency̟, the increase in U
(1)
0 increases the unstable zone.

This shows that velocity plays a destabilizing role. In Figure 18 we repeated the
computation for variation of the viscosity parameter. It is found that the increase of
the viscosity ratio η leads to a decreases in the width of the unstable zone. Similar
behaviour is observed when we increase the permeability q−1

1 . Therefore both η
and q−1

1 have a damping effect in the stability criteria in the presence of the field
frequency.

Figure 17 Refers to the transition curves (74) for a system having ρ = 0.5, η = 1.5, µ = 2.5,

̟ = 5, q−1
1 = 2, q−1

2 = 1, U
(2)
0 = 1, σT = 10
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Figure 18 For the same system as in Fig. 17 except that U
(1)
0 = 3

8. Stability Behaviour for the Full Complex Damped Mathieu Equation
(52)

In this section, we return to the full complex damped Mathieu equation (52). We
shall deal with the general case where the growth rate disturbance is presented.
In the case of a uniform magnetic field, Hurwitz stability criterion is used. The
necessary and sufficient conditions for stability is given by

A > 0 and A2(Ω2 +QJ2
0 ) − λ2 > 0 . (77)

Thus the negative of the real part of the growth rate holds as the above conditions
are satisfied. The transition curve separating the stable from the unstable regions
is given by

J2
0 > J⊗ =

1

QA2
(λ2 −A2Ω2) . (78)

To determine the stability conditions for the complex damped Mathieu equation
(50), a perturbation technique may be used to accomplish this purpose. We use
the method of multiple scales as described by [27, 32] to obtain an approximate
solution and to analyze the stability criteria.

Since we are considering the surface deformations caused by the magnetic surface
stress stemming from the alternating external magnetic field, it would be convenient
to recall an ordering relation J2

00 = εJ2
0 , with J0 as a constant of proportionality.
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Figure 19 For the same system as in Fig. 18 for variation q−1
1

In accordance with the method of multiple time scales, two time scales T0 and T1

are introduced:
T0 = t and T1 = εt .

The differential operators can now be expressed as the derivative expansions

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+ . . . , and

d2

d t2
=

∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1
+ . . . ,

where T0 is time of the lowest order. The detailed analysis of this procedure is
given in [32]. Omitting the details, one finds the stability criterion at the resonance
case of approaching the field frequency ̟ to the frequency part ω̂ of the growth
disturbance in the form

J2
00 < J⊗

1 =
4(̟ − ω̂)(4ω̂2 +A− 2Ω2)

Q(2ω̂ +
√

3Ω2 − 2ω̂2 − 3
4A

2)
, (79)

J2
00 > J⊗

2 =
4(̟ − ω̂)(4ω̂2 +A− 2Ω2)

Q(2ω̂ −
√

3Ω2 − 2ω̂2 − 3
4A

2)
, (80)

where ω̂ is the disturbance frequency given by

ω̂2 = 1
8

(

4Ω2 −A2 +
√

(4Ω2 −A2)2 + 16λ2
)

. (81)

From the Floquet theory [39], the region bounded by the two branches of the tran-
sition curves J⊗

1 and J⊗

2 is the unstable region. The region outside these curves is
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stable. The width of the unstable region is represented by (J⊗

2 −J⊗

1 ). The increase
of this refers to the destabilizing influence, while its decrease represents a stabilizing
role. The contact between J⊗

1 and J⊗

2 refers to the resonance point. This point
occurs when field frequency ̟ approaches disturbance frequency ω̂. Investigating
the two transition curves J⊗

1 and J⊗

2 reveals that the resonance point occurs for
J2

00 = 0. However this resonance point can be given by

λ2 + (4Ω2 −A2)̟2 − 4̟4 = 0. (82)

In terms of the ratio H, the above equation can be put in the following form:

aH2 + 2bH + c = 0, (83)

where

a = k2
(

U
(1)
0 − U

(2)
0

)2
(

4k2ρ+ ρq−1
2 − ηq−1

1

)2
+ 4k̟2(ρ+ 1)

(

k2σT − ρ+ 1
)

−

4k2ρ̟2
(

U
(1)
0 − U

(2)
0

)2

−̟2
(

4k2 + q−1
2 + ηq−1

1

)2 − 4̟4 (ρ+ 1)
2
,

b = k2
(

U
(1)
0 − U

(2)
0

)2
(

4k2ρ+ ρq−1
2 − ηq−1

1

) (

4k2η − ρq−1
2 + ηq−1

1

)

−

4k̟2(ρ+ 1)
(

k2σT − ρ+ 1
)

+ 4k2ρ̟2
(

U
(1)
0 − U

(2)
0

)2

+

̟2(4k2 + q−1
2 + ηq−1

1 )(4k2η + q−1
2 + ηq−1

1 ) +̟4(ρ+ 1)2,

c = k2
(

U
(1)
0 − U

(2)
0

)2
(

4k2η − ρq−1
2 + ηq−1

1

)2
+ 4k̟2(ρ+ 1)(k2σT − ρ+ 1) −

4k2ρ̟2
(

U
(1)
0 − U

(2)
0

)2

−̟2
(

4k2η + q−1
2 + ηq−1

1

)2 − 4̟4(ρ+ 1)2 .

Therefore, for each real positive values of the roots H∗
1 and H∗

2 of the above equation
(83), there are two resonance points at (H∗

1 , 0) and (H∗
2 , 0).

We present the numerical discussion for the stability behaviour where the mag-
netic field depends of the frequency ̟. Therefore the computation is made for the
transition curves (79) and (80). In the calculations the computed value of the free
electric surface currents parameter J2

00 versus the ratio H at a fixed the wavenum-
ber k is utilized. In these calculations the stability picture at the resonance case
of ̟ ≈ ω̂ is presented. The numerical results are displayed in Figures 20–23. In
these calculations two resonance points are found and they satisfy the condition
̟ = ω̂. The transition curves that are imbedded from these resonance points have
bounded the unstable resonance regions. The two unstable regions are connected
and collected into one unstable region. Outside the resonance region is the stable

region. It is observed that the resonance region is a function of both ̟, ρ, η, U
(j)
0 ,

q−1
j and k.

In Figure 20 we examine the influence of the field frequency on both the reso-
nance points and the unstable resonance region. The graph is computed for some
consequent values for the frequency ̟, while other parameters are held fixed. For a
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Figure 20 Represents the transition curves of (78) and (79) for a system having ρ = 1.2, η = 0.7,

µ = 0.6, q−1
1 = 5, q−1

2 = 1, U
(1)
0 = 3, U

(2)
0 = 1, σT = 80 for a fixed the wavenumber at k = 1.3

specific frequency ̟ = 8.42, it is found the first resonance point lies at H = 1.49094
while the second resonance located at H = 2.49472. When the frequency has
been increased to the value ̟ = 8.43, the first resonance shifts to the position
H = 1.44814 and the second resonance point shifts to H = 3.05709. In the case
of ̟ = 8.44, the first resonance lies at the point of H = 1.41789, while the second
resonance is located at H = 3.974. Thus we conclude that as ̟ is increased the
distance (H∗

1 −H∗
2 ) increases. Moreover, the width of the unstable region increases.

This shows the destabilizing influence of increasing the field frequency ̟.
In Figure 21 we repeated the calculations of Figure 20 but for some variation of

the viscosity parameter η. The other physical parameters are held fixed. It is seen
that as η is changed from the value 0.7 to the value 0.75 the width of the unstable
region has decreased. Another conclusion is observed whence η is increased to the
value 0.8, the width of unstable region increases. This means that there is a dual role
in the stability behaviour at the resonance case as the viscosity ratio is increased.

The influence of some variation of the fluid velocity U
(1)
0 and the permeability

parameter q−1
1 are the subject of Figure 22 and Figure 23, respectively. It appears

that the increase in both U
(1)
0 and q−1

1 have a destabilizing influence in the stability
behaviour at the resonance case.



58 Instability of Darcian Flow in an Alternating Magnetic Field

Figure 21 For the same system as in Fig. 20 except that ̟ = 8.42 and η = 0.7 , 0.75 , 0.8

Figure 22 For the same system as in Fig. 20 with ̟ = 8.42 and η = 0.7
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Figure 23 For the same system as in Fig. 20 but q−1
1 has some consequence values
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