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1. Introduction

In this paper the influence of applying a small impulse on the hyperbolic orbital
elements is considered. The change in the hyperbolic elements depend solely on
the change in magnitude and direction of the velocity vector since the radius vector
remains unaltered during the operation. Small intermediate impulse is applied in
the case of bi-elliptic transfer and always involves going to infinity and coming back
again.

A hyperbola - hyperbola transfer can always be performed with six infinitesi-
mal impulses given at either infinity or origin. If the two hyperbolas intersect, the
transfer can be done by a single impulse. Also ellipse-hyperbola transfer may be
achieved. In this case-five impulses are required [3]. The effect of small impulses on
the orbital elements is required to be determined”in transfer and rendezvous prob-
lems, for the purpose of infinitesimal or small a corrections of the orbital elements
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of the trajectory [4].

2. Method and results

2.1. Application of Gauss Method for Hyperbolic Orbits

According to Gauss’ procedure for elliptic orbits and from the basic formulae of
hyperbolic motion, namely [5,6]

r =
a(e2

− 1)

1 + e cos f
, (1)

e sinhF − F = ν(t − τ) , (2)

r = a(e cosh F − 1) = M , (3)

∂r

∂σ
=

∂a

∂σ
(e cosh F − 1) + a

(

∂F

∂σ
e sinh F +

∂e

∂σ
cosh F

)

(4)

∂F

∂σ

r

a
+

∂e

∂σ
sinhF =

∂(ǫ − ̟)

∂σ
, (5)

where σ is either one of the six hyperbolic orbital elements a, e, i, ̟, Ω, ǫ; ν is a
quantity defined by ν2a3 = µ; F is analogous to the elliptic eccentric anomaly and
is defined by Eq. (2); f is the true anomaly.

r cos f = ae − a cosh F , (6)

a cosh F = ae − r cos f , (7)

After some reductions we acquire

∂r

∂σ
=

∂a

∂σ

r

a
+

a2e sinh F

r

∂(ǫ − ̟)

∂σ
+

∂e

∂σ

(

−r cos f + ae −
a2e sinh2 F

r

)

. (8)

We have

tan
f

2
=

(

e + 1

e − 1

)
1

2

tanh
F

2
. (9)

After differentiating Eq.(9) with respect to σ and after some algebraic and trigono-
metric reductions we get

∂f

∂σ

1

sin f
=

∂e

∂σ

−1

e2
− 1

+
∂F

∂σ

1

sinhF
. (10)

From Eqs. (5) and (10), after some calculations, we can write

∂f

∂σ
= sin f

[

∂e

∂σ

(

−1

e2
− 1

−

a

r

)

+
∂(ǫ − ̟)

∂σ

ab

r2

]

, (11)

where b = a(e2
− 1)

1

2 . Let

u = ω + f = ̟ − Ω + f .
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Whence from Eq. (10) we get

∂u

∂σ
=

∂(̟ − Ω)

∂σ
− sin f

(

a

r
+

1

e2
− 1

)

∂e

∂σ
+

ab

r2

∂(ǫ − ̟)

∂σ
. (12)

By the hyperbolic relationships Eqs. (1),(2) and (3) we can prove that the squared
bracket on the R.H.S. of Eq. (8) is equal to (+a cos f), whence

∂r

∂σ
=

∂a

∂σ

r

a
+

a2e sinh F

r

∂(ǫ − ̟)

∂σ
+ a cos f

∂e

∂σ
. (13)

From Gauss treatment of secular inequalities we have:

1

k

∂R

∂σ
=

∂r

∂σ
.S + r

[

n3

∂Ω

∂σ
+

∂u

∂σ

]

.T + r

[

−n2

∂Ω

∂σ
+

∂i

∂σ
sinu

]

.W , (14)

here n2 = cos u. sin i and n3 = cos i. R is the planetary disturbing function, S,
T , W are the orthogonal components of the attraction between the disturbed and
disturbing planets, k = Gm1. Whence from Eqs. (14), (13), (12) we can find

1

k

∂R

∂σ
=

[

∂a

∂σ

r

a
+

a2e sinhF

r

(

∂ǫ

∂σ
−

∂̟

∂σ

)

+ a cos f
∂e

∂σ

]

.S +

r

[

cos i
∂Ω

∂σ
−

(

1

e2
− 1

+
a

r

)

∂e

∂σ
sin f +

∂(̟ − Ω)

∂σ
+

∂(ǫ − ̟)

∂σ

ab

r2

]

.T +

r

[

− cos u. sin i
∂Ω

∂σ
+ sinu.

∂i

∂σ

]

.W . (15)

From Eq. (15) we can immediately deduce the following

1

k

∂R

∂a
=

( r

a

)

.S

1

k

∂R

∂e
= a cos f.S − r

(

1

e2
− 1

+
a

r

)

sin f.T

1

k

∂R

∂i
= r sin u.W

1

k

∂R

∂Ω
= −r(1 − cos i).T − r sin i cos u.W (16)

1

k

∂R

∂ǫ
=

(

a2e sinhF

r

)

.S +

(

ab

r

)

.T

1

k

∂R

∂̟
=

(

a2e sinhF

r

)

.S +

(

1 −

ab

r2

)

.T .

3. Effect of a small impulse on the hyperbolic orbital elements

For hyperbolic trajectories

r =
a(e2

− 1)

1 + e cos f
, i.e., cos f =

a(e2
− 1) − r

er
,
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e sinh F − F = M = ν(t − τ) ,

r = a(e cosh F − 1) .

From the above equations, we find:

e

[

F +
F 3

6
+ . . .

]

− F = ν(t − τ) = M ,

i.e. we get up to F 3, the equation:

F 3 + F
6(e − 1)

e
−

6M

e
= 0 . (17)

Whence

F =
ν(t − τ)

e − 1
+ A(t − τ)3 , (18)

sinhF =
ν(t − τ)

e − 1
+ B(t − τ)3 , (19)

cosh F = 1 +
1

2

(

ν(t − τ)

e − 1

)2

. (20)

The proof for the Eqs. (18), (19) and (20) is the following: firstly, by using Math-
ematica software, to solve Eq. (17) with respect to F , we get one real and two
complex roots, the real one is:

F =
−2e(e − 1) +

{

3e2M +
√

e3 [8(e − 1)3 + 9eM2]
}

2

3

e
{

3e2M +
√

e3 [8(e − 1)3 + 9eM2]
}

1

3

Expanding as a power series in M up to M3, we get

F =
1

e − 1
M −

e

6(e − 1)4
M3 ,

i.e.

F =
ν(t − τ)

e − 1
+ A(t − τ)3 ,

where

A =
−eν3

6(e − 1)4
.

Secondly, we have

sinhF =
M + F

e
=

1

e

[

M +
M

e − 1
−

eM3

6(e − 1)4

]

,

sinhF =
M

e − 1
−

M3

6(e − 1)4
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Therefore,

sinhF =
ν(t − τ)

e − 1
+ B(t − τ)3 ,

where

B = −

1

6(e − 1)4
.

Thirdly, from
∂M

∂F
= e cosh F − 1

and by differentiating with respect to F , we obtain:

cosh F =
∂

∂M

(

M

e − 1
−

M3

6(e − 1)4

)

∂M

∂F
,

cosh F =

(

1

e − 1
−

M2

2(e − 1)4

)

(e cosh F − 1) ,

after some algebraic reductions, we get

cosh F = 1 +
M2

2(e − 1)2
,

i.e.

cosh F = 1 +
ν2(t − τ)2

2(e − 1)2
.

Now, let
ζ = r cos f , η = r sin f ,

whence
ζ = a(e − cosh F ) . (21)

By substitution for cos f

η = r
(

1 − cos2 f
)

1

2 = r

{

1 −

[

a(e2
− 1) − r

er

]2
}

1

2

(22)

η =
1

e

{

(e2
− 1)

[

r(r + 2a) − a2(e2
− 1)

]}
1

2 (23)

η =
1

e

{

(e2
− 1)

[

a(e cosh F − 1)(ae cosh F − a + 2a) − a2(e2
− 1)

]}
1

2 (24)

After some reductions, we have

η = a
√

e2
− 1 sinhF , (25)

From Eqs. (20), (21), we have

ζ = a(e − 1) −
aν2

2(e − 1)2
(t − τ)2 , (26)
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ζ = −

aν2

(e − 1)2
(t − τ) . (27)

From Eqs. (19) and (25), we get

η =
aν(e + 1)

1

2

(e − 1)
1

2

(t − τ) + C(t − τ)3 , (28)

η =
aν(e + 1)

1

2

(e − 1)
1

2

+ D(t − τ)2 , (29)

Evaluation of A, B, C, D is not needed.
From Eqs. (26)–(29) we get at t = τ

∂ζ

∂a
= e − 1 ;

∂ζ

∂e
= a ;

∂ζ

∂τ
=

∂ζ

∂a
=

∂ζ

∂e
=

∂η

∂a
=

∂η

∂e
=

∂η

∂τ
= 0 ;

∂ζ

∂τ
=

aν2

(e − 1)2
;

∂η

∂τ
= −

aν(e + 1)
1

2

(e − 1)
1

2

;

∂η

∂a
= −

ν(e + 1)
1

2

2(e − 1)
1

2

;

∂η

∂e
= −

aν

(e + 1)
1

2 (e − 1)
3

2

.

From the definition of the Lagrange’s brackets,

[αr, αs] =
∂ζ

∂αr

∂ζ̇

∂αs

−

∂ζ

∂αs

∂ζ̇

∂αr

+
∂η

∂αr

∂η̇

∂αs

−

∂η

∂αs

∂η̇

∂αr

,

where α is any one of the elements a, e, χ. We get

[a, e] = [e, τ ] = 0 , (30)

[a, τ ] = −

aν2

2
. (31)

If we put χ = −νt, then

[a, e] = [e, χ] = 0 , (32)

[a, χ] =
aν

2
. (33)

Now,

h = a2ν(e2
− 1)

1

2 .
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From

[βr, βs] = −h sin i
∂(Ω, i)

∂(βr, βs)
,

where β is either of the elements Ω, ω, i. We have:

[ω,Ω] = [ω, i] = 0 , (34)

[Ω, i] = −a2ν(e2
− 1)

1

2 sin i (35)

and from

[α, β] = −

[

cos i
∂Ω

∂β
+

∂ω

∂β

]

∂h

∂α

we have
[χ,Ω] = [χ, ω] = [χ, i] = [a, i] = [e, i] = 0 , (36)

[a,Ω] = − cos i
∂h

∂a
, (37)

i.e.

[a,Ω] = −

aν
√

e2
− 1 cos i

2
, (38)

[e,Ω] = − cos i
∂h

∂e
, (39)

i.e.

[e,Ω] = −

a2νe cos i
√

e2
− 1

, (40)

[a, ω] = −

∂h

∂a
, (41)

i.e.

[a, ω] = −

aν
√

e2
− 1

2
, (42)

[e, ω] = −

∂h

∂e
, (43)

i.e.

[e, ω] = −

a2νe
√

e2
− 1

. (44)

From, the two Eqs.

3
∑

i=1

[(αr, αi)αi + (αr, βi)βi] =
∂R

∂αr

,

3
∑

i=1

[(βr, αi)αi + (βr, βi)βi] =
∂R

∂βr

,

Whence,
∂R

∂a
=

aν

2

[

χ −

√

e2
− 1(cos i.Ω + ω)

]

(45)
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∂R

∂e
= −

a2νe
√

e2
− 1

(cos i.Ω + ω) (46)

∂R

∂χ
= −

aνa

2
. (47)

∂R

∂Ω
=

aν
√

e2
− 1 cos i

2

[

a +
2ae.e

e2
− 1

− 2a tan i
∂i

∂t

]

(48)

∂R

∂ω
=

aν
√

e2
− 1

2

[

a +
2ae.e

e2
− 1

]

(49)

∂R

∂i
= a2ν

√

e2
− 1 sin i.Ω . (50)

From equations (45)–(50), we obtain

a = −

2

aν

∂R

∂χ
. (51)

e =
1

a2νe

[

√

e2
− 1

∂R

∂ω
+ (e2

− 1)
∂R

∂χ

]

. (52)

χ = −

e2
− 1

a2νe

∂R

∂e
+

2

aν

∂R

∂a
. (53)

Ω =
1

a2ν
√

e2
− 1 sin i

∂R

∂i
(54)

ω = −

√

e2
− 1

a2νe

∂R

∂e
−

cot i

a2ν
√

e2
− 1

∂R

∂i
(55)

di

dt
=

1

a2ν
√

e2
− 1

[

cot i
∂R

∂ω
− csc i

∂R

∂Ω
−

]

(56)

Let R′ denotes the disturbing function, expressed in terms of a, e, i, Ω, ̟, ǫ where
̟ = ω + Ω and ǫ = ω + Ω + χ. Then

∂R

∂Ω
=

∂R′

∂Ω
+

∂R′

∂̟
+

∂R

∂ǫ
∂R

∂ω
=

∂R′

∂̟
+

∂R′

∂ǫ
∂R

∂χ
=

∂R′

∂ǫ

After substitution in the above equations, we obtained the following equations for
hyperbolic motion

a = −

2

aν

∂R

∂ǫ
. (57)

but

ǫ = ω + Ω + χ .
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Whence

ǫ =
2

aν

∂R

∂a
−

√

e2
− 1(

√

e2
− 1 + 1)

a2νe

∂R

∂e
+

tan i

2

a2ν
√

e2
− 1

∂R

∂i
(58)

e =

√

e2
− 1

a2νe

[

∂R

∂̟
+

(

1 +
√

e2
− 1

) ∂R

∂ǫ

]

(59)

Ω =
1

a2ν
√

e2
− 1 sin i

∂R

∂i
(60)

and

̟ = ω + Ω .

then

̟ = −

√

e2
− 1

a2νe

∂R

∂e
+

tan i

2

a2ν
√

e2
− 1

∂R

∂i
(61)

di

dt
= −

1

a2ν
√

e2
− 1

[

tan
i

2

(

∂R

∂̟
+

∂R

∂ǫ

)

+ csc i
∂R

∂Ω

]

. (62)

Brouwer, Boccaletti and Murray derived Eqs (57)–(62) for the elliptic motion [1,2,5].
After substitution from Eq (16) in Eqs (57)–(62) we find the Gaussian form for

a, ǫ, e, i, Ω, ̟ for a hyperbolic orbit as follows:

a = −

2

aν

(

a2e sinhF

r
. S +

ab

r
. T

)

(63)

ǫ =
2

aν

[

r

a
−

√

e2
− 1(

√

e2
− 1 + 1)

2e
cos f

]

. S + (64)

√

e2
− 1(

√

e2
− 1 + 1)

a2νe
r sin f

(

a

r
+

1

e2
− 1

)

. T +
r sinu tan i

2

a2ν
√

e2
− 1

.W ,

e =

√

e2
− 1

a2νe

[

a2e
√

e2
− 1

r
sinhF . S +

(

r +
a2(e2

− 1)

r

)

. T

]

(65)

Ω =
r sin u

a2ν
√

e2
− 1 sin i

.W (66)

̟ = −

√

e2
− 1

a2νe

[

a cos f . S − r sin f

(

a

r
+

1

e2
− 1

)

. T

]

+
r sinu tan i

2

a2ν
√

e2
− 1

.W (67)

di

dt
=

r cos u

a2ν
√

e2
− 1

.W (68)

The mean longitude l is given by

l = ρ + ǫ =

∫

ν dt + ǫ . (69)
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For hyperbolic motion ρ is defined by

ρ =

∫

v dt . (70)

We have
µ = ν2a3

i.e.
ν = ν

1

2 a−
3

2 ,

whence

ρ = µ
1

2

∫

a−
3

2 dt .

By differentiation
ρ = µ

1

2 a−
3

2 = ν .

Evidently ν is a function of a only. Then

dν

da
= −

3

2
µ

1

2 a−
5

2 = −

3ν

2a
,

and we have

ρ =
dν

dt
=

dν

da

da

dt

ρ =
2

aν

dν

da

∂R

∂ǫ

From the above, we get

ρ̈ = −

3

a2

∂R

∂ǫ
. (71)

Substituting for ∂R

∂ǫ
from Eq. (16) we may write

ρ̈ = −

3

a2

(

a2e sinhF

r

)

. S +
ab

r
. T (72)

assuming k to be absorbed in S, T .
The reason for the introduction of ρ is to avoid the appearance of mixed terms

in the trigonometric series encountered through the analysis. We have

S =
∆νS

∆t
; T =

∆νT

∆t
; W =

∆νW

∆t
. (73)

Thus from the Gaussian form, we obtain the variations in the hyperbolic orbital
elements due to a small impulse as the following:

∆a = −

2

ν

(

ae sinh F

r
∆νS +

sin f

sinhF
∆νT

)

(74)

∆ǫ =
1

aν

{[

2r

a
−

√

e2
− 1(

√

e2
− 1 + 1)

e
cos f

]}

∆vS + (75)

√

e2
− 1(

√

e2
− 1 + 1)

ae

(

a

r
+

1

e2
− 1

)

r sin f .∆vT +
r sin u tan i

2

a
√

e2
− 1

.∆vW
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∆e =

√

e2
− 1

ν

[√

e2
− 1

r
sinhF .∆vS +

(

r

a2e
+

e2
− 1

er

)

.∆vT

]

(76)

∆Ω =
r sin u

a2ν
√

e2
− 1 sin i

.∆vW (77)

∆̟ = −

√

e2
− 1

aνe

[

cos f .∆vS −

(

1

r
+

1

a(e2
− 1)

)

r sin f .∆vT +
er tan i

2
sin u

a(e2
− 1)

.∆vW

]

(78)

∆i =
r cos u

a2ν
√

e2
− 1

.∆vW . (79)

4. Discussion

The subject of the present paper is the change in the orbital elements of a rocket
moving in a hyperbolic trajectory due to a small impulse. We calculated the La-
grange’s brackets that appear in the partial derivatives of the perturbation function
with respect to the orbital elements. Then we computed the expressions for a, e,
χ, Ω, ω, di

dt
which are the Lagrange’s equations for the hyperbolic trajectory.

Moreover we derived the modified hyperbolic equations when a, e, χ, Ω, ω,
i are replaced by a, e, ǫ, Ω, ̟, i. Also, for the hyperbolic motion, we should
acquire the Gaussian form, for the partial derivatives of the disturbing function
with respect to a, e, i, ǫ, Ω, ̟. We computed the Gauss’ equation of the first
form for hyperbolic orbits, from which, we finally obtained the differential changes
in the hyperbolic orbital elements, due to a small impulse applied to the rocket’s
hyperbolic trajectory by the substitutions S = ∆vS

∆t
, T = ∆vT

∆t
, W = ∆vW

∆t
.

The impulse change in velocity ∆v splits into three components as shown in the
analysis of the problem, and we have ∆v = ∆vS + ∆vT + ∆vW , where ∆vW , is
perpendicular to the orbital plane and ∆vS , ∆vT are along and at right angles to
the radius vector and are lying in the orbital plane. Evidently, if ∆vW = 0, the
impulse does not alter the inclination or the longitude of the ascending node. The
above treatment is a completely rigorous mathematical one. No approximations or
non-closed forms are dealt with, through the analysis. This research work is the
first publication about the importance of applying a small impulse in transfer and
rendezvous problems for hyperbolic trajectories. Most of the involved equations are
new, since we are concerned with the hyperbolic motion.

References

[1] Brouwer, D and Clemence, GM: (1965), Methods of Celestial Mechanics, Acad-
emic Press.

[2] Boccaletti, D and Pucacco, G: (1999), Theory of Orbits, Springer, Part 2 Pertur-
bative and Geometrical Methods, Ch. 6

[3] Edelbaum, TN: (1967), How Many Impulses?, Astronautics & Aeronautics, AIAA.

[4] Herrick, S: (1971), Astrodynamics, 1, Van Nostrand.

[5] Murray, CD and Dermott, SF: (1999), Solar System Dynamics, Cambridge Uni-
versity Press.

[6] Roy, AE: (1982), Orbital Motion, Adam Hilger.

[7] Smart, WM: (1960), Celestial Mechanics, Longmans.




