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Received (19 August 2003)

Revised (22 September 2003)

Accepted (1 December 2003)

Dynamic stability of an axially moving corrugated board web has been investigated. The
board web is modelled as an thin-walled composite plate structure. Mathematical model
of the moving web system has been derived using the classical laminated panel theory.
In the solution of the problem the Koiter’s asymptotic expansion and the numerical
transition matrix method have been employed: The results of numerical investigations
show the solutions to the linearized problem. The effects of the transport velocity and
axial load of the web on its dynamic stability are presented.
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1. Introduction

Since their appearance in the 1960’s, the use of modern composite materials is
growing rapidly around the world. Composites have been lately commonly used
in aircraft industry, army, automotive industry and marine structures, as well as
in packaging. With progress in the technology of composite materials, composite
plates made of solid laminates, sandwich laminates, and laminates reinforced with
stiffeners are widely used in packages, cars, wagons, ships, aeroplanes and marine
structures. The positive factors promoting the use of fibrous composites in the
construction of load carrying elements include good wear (e.g. friction) resistance,
fatigue life (under time-variable loads), sound insulation properties or electromag-
netic transparency.

Corrugated board is a highly efficient composite material. It is used extensively
as a packaging material because of its high strength and stiffness properties. These
properties allow it to be manufactured into boxes and trays for transporting, storing
and distributing a wide range of consumer products.
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Paper and corrugated board properties derive from the raw materials and pa-
permaking processes. Relatively recent technical developments allow high speed
formation of the web in simultaneous or sequential multi-layered structure like pa-
perboard. Paper is generally considered to be an anisotropic fibrous composite
material. Theoretical models describing mechanical properties of paperboard in-
cluding those based on an thin-walled orthotropic plate structure.

Excessive vibrations of moving board webs in the industry increase the defects
and can lead to failure of the web. In the paper and textile industries involving
motion of thin materials, stress analysis in the moving web is essential for the control
of wrinkle, flutter and sheet break. Although the mechanical behaviour of axially
moving materials has been studied for many years, little information is available on
the dynamic behaviour and stress distribution in the axially moving multi-layered
paper and board materials.

A lot of earlier works in this field focussed on investigations of stationary or-
thotropic composite plates. A more comprehensive review of the literature can be
found in investigations of Dawe and Wang [3], Jones [4], Kolakowski and Królak [7],
Loughlan [10, 11], Matsunga [12], Walker et al. [17], Wang et al. [18].

On the other hand, in literature one can find a lot of works on dynamic investi-
gations of axially moving orthotropic web, i.e. one-layered systems. Recent works
in this field analysed the non-linear vibrations of an axially moving orthotropic web
[13, 14], the equilibrium displacement and stress distribution in non-linear model
of an axially moving plate [9], the wrinkling phenomenon and stability of the linear
model of an axially moving isotropic plate [8], and stress distribution in an axially
moving plate [19].

The aim of this paper is to analyse the dynamic stability of an axially moving
sandwich composite web. Mathematical model of the moving web system has been
derived using the classical laminated panel theory. In the solution of the problem
the Koiter’s asymptotic expansion and the numerical transition matrix method
have been employed: Numerical investigations are carried out for a corrugated
board composite structure. The numerical data of the board material received on
the base of experimental investigations have been taken from the recent literature.
Paperboard is treated as thin-walled composite structure in the elastic range, being
under axial extension. The effects of the transport velocity and axial load of the
web on its dynamic stability are presented in this paper.

2. Formulation of the problem

Three-layered composites consist of two thin facings (the skin or sheets) sandwiching
a core (Fig. 1). The facings are made of high strength materials having good
properties under tension while the siding core in the form of corrugated trapezoidal
plate is made of lightweight materials. Sandwich composites combine lightness and
flexural stiffness. Fig. 1 also depicts the coordinate system. The x-axis refers to
the machine direction, the y-axis refers to the cross or transverse direction. The
machine and cross directions form the plane of the structure, and z-axis refers to
the out-of-plane (or through- thickness) direction.

Let us consider thin-walled web built of plate elements (panels). The web under
consideration is multi-layer plate made of orthotropic materials. The composite
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Figure 1 Schematic of the sandwich composite macrostructure

has been modeled as the thin–walled laminar construction with rigid core. The
classical laminated panel theory [4] is used in the theoretical analysis, the effects
of shear deformation through the thickness of the laminate are neglected and the
results given are those for thin laminated panels. The materials they are made of
are subjected to Hooke’s law.

For each panel component, precise geometrical relationships are assumed in order
to enable the consideration of both out-of-plane and in-plane bending of the plate:

ε1 = u1,1 + 0.5um,1um,1

ε2 = u2,2 + 0.5um,2um,2

ε3 = u1,2 + u2,1 + um,1um,2

ε4 = −hu3,11; ε5 = −hu3,22; ε6 = −2hu3,12

(1)

where: h is the thickness of the plate, u1 ≡ u, u2 ≡ v, u3 ≡ w – the components
of the displacement vector in the x1 ≡ x, x2 ≡ y, x3 ≡ z axis direction,
respectively, and ε1 = εx, ε2 = εy, ε3 = 2εxy = γxy, ε4 = hκx, ε5 = hκy, ε6 = hκxy.
The summation with respect to the factor m is from 1 to 3 (m = 1, 2, 3).

Using the classical plate theory [4, 6], the constitutive equation for the laminate
is taken as follows:

{N} =

[

[A] [B]
[B] [D]

]

{ε} = [K] {ε} (2)

where:

Aij =
1

h

N
∑

k=1

(Q̄ij)k(zk − zk−1) (3)

Bij =
1

2h2

N
∑

k=1

(Q̄ij)k(z2
k − z2

k−1) (4)

Dij =
1

3h3

N
∑

k=1

(Q̄ij)k(z3
k − z3

k−1) (5)

K =

[

[A] [B]
[B] [D]

]
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in which Aij = Aji, Bij = Bji, Dij = Dji, Kij = Kji and Q̄ij is the transformed
reduced stiffness matrix.

In the above equations N1, N2, N3 are the dimensionless sectional forces and
N4, N5, N6 – the dimensionless sectional moments:

N1 =
Nx

E0h
; N2 =

Ny

E0h
; N3 =

Nxy

E0h
; N4 =

Mx

E0h2
; N5 =

My

E0h2
; N6 =

Mxy

E0h2
, (7)

where E0 is the elastic modulus of reference.

The reverse relation with respect to (2) can be written as:

{ε} = [K]
−1

{N} =
[

K̄
]

{N} (8)

In the constitutive matrix of Eq. (2), the submatrix [A], detailed in Eq. (3) and
related to the in-plane response of the laminate, is called extensional stiffness. The
submatrix [D], described by Eq. (4), is associated with the out-of-plane bending
response of the laminate and is called bending stiffness, whereas the submatrix
[B], illustrated by Eq. (3), is a measure of an interaction (coupling) between the
membrane and the bending action. Thus, it is impossible to pull on a laminate
that has Bij terms without bending and/or twisting the laminate at the same
time. That is, an extensional force results in not only extensional deformations, but
also twisting and/or bending of the laminate Moreover, such a laminate cannot be
subjected to moment without suffering simultaneously from extension of the middle
surface [3, 4, 6].

y ,v 

c 
b 

z ,w 

x ,u 

l 

h 

Figure 2 Axially moving web

Let suppose now that the multi-layered web of the length l is considered. The
web moves at the constant velocity c in the x direction. The geometry of the con-
sidered model is shown in Fig. 2. The equations of dynamic stability of the moving
composite structure have been derived using the Hamilton’s principle. Actual tra-
jectories differ from the other that satisfy the Hamilton’s principle for the web can
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be written as:

δ
t1
∫

t0

Ldt =
t1
∫

t0

(δU − δV + δW ) dt =

t1
∫

t0

{

0.5
∫

Ω

ρδ
[

(c + u1,t + cu1,1)
2

+ (u2,t + cu2,1)
2

+ (u3,t + cu3,1)
2
]

dΩ

−
∫

Ω

(σ1δε1 + σ2δε2 + σ3δε3) dΩ +
b
∫

0

hp0 (x2) δu1dx2|
x1=`
x1=0

}

dt = 0

(9)

where: U – kinetic energy, V – internal elastic strain energy, W – work of external
forces, p0(x2) – external load in the plate middle surface. The expression Ω =
` × b × h = S × h has been employed in the above relation.

In order to determine the variation of a single multi-layer panel, the following
identity has been taken

XδY = δ(XY ) − Y δX . (10)

After grouping the components at respective variations, the following system of
equations of motion has been obtained:

t‘
∫

t0

∫

S

{

[N1(1 + u1,1) + N3u1,2],1 + [N2u1,2 + N3(1 + u1,1)],2 +

ρ̄
(

−u1,tt − 2cu1,1t − c2u1,11

)}

δu1dSdt = 0

t‘
∫

t0

∫

S

{

[N1u2,1 + N3(1 + u2,2)],1 + [N2(1 + u2,2) + N3u2,1],2 +

ρ̄
(

−u2,tt − 2cu2,1t − c2u2,11

)}

δu2dSdt = 0

t‘
∫

t0

∫

S

[

(hN4,1 + N1u3,1 + N3u3,2),1 + (hN5,2 + 2hN6,1 + N2u3,2 + N3u3,1),2 +

ρ̄
(

−u3,tt − 2cu3,1t − c2u3,11

)]

δu3dSdt = 0

(11)

where:

ρ̄ =
1

h

N
∑

k=1

ρk(zk −zk−1) ;

t
∫

t0

∫

S

[

εi − K̄ijNj

]

δNidSdt = 0 , i, j = 1, 2, ...6 . (12)
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The boundary conditions for x1=const:

t1
∫

t0

b
∫

0

{

ρ̄
(

c2 + cu1,t + c2u1,1

)

−
[

N1 + N1u1,1 + N3u1,2 − hp0(x2)
]}

δu1dx2dt |x1
= 0

t1
∫

t0

b
∫

0

{

ρ̄
(

c u2,t + c2u2,1

)

− [N3 + N1u2,1 + N3u2,2]
}

δu2dx2dt |x1
= 0

t1
∫

t0

b
∫

0

N4δu3,1dx2dt |x1
= 0

t1
∫

t0

b
∫

0

{

ρ̄
(

c u3,t + c2u3,1

)

− (hN4,1 + 2hN6,2 + N1u3,1 + N3u3,2)
}

δu3dx2dt |x1
= 0

(13)
The boundary conditions for x2=const:

t1
∫

t0

l
∫

0

[N2 + N2u2,2 + N3u2,1]δu2dx1dt |x2
= 0

t1
∫

t0

l
∫

0

[N3 + N2u1,2 + N3u1,1]δu1dx1dt |x2
= 0

t1
∫

t0

l
∫

0

N5δu3,2dx1dt |x2
= 0

t1
∫

t0

∫̀

0

(hN5,2 + 2hN6,1 + N2u3,2 + N3u3,1)δu3dx1dt |x2
= 0

(14)

The boundary conditions for the plate corner (x1= const and x2= const):

t1
∫

t0

2N6 |x1
|x2

δu3dt = 0 (15)

Initial conditions (t= const):

l
∫

0

b
∫

0

[ρ̄ (c + u1,t + c u1,1)] δu1dx1dx2 |t = 0

l
∫

0

b
∫

0

[ρ̄ ( u2,t + c u2,1)] δu2dx1dx2 |t = 0

l
∫

0

b
∫

0

[ρ̄ ( u3,t + c u3,1)] δu3dx1dx2 |t = 0

(16)

Eq. (9) is a system of equilibrium equations. Eq. (12) are the already employed
relations between strains and external forces, whereas relations (10), (11) and (12)
correspond to the boundary conditions and in the plate corner.

3. Solution of the problem

The problem of dynamic stability has been solved with asymptotic perturbation
method. In the solution of the problem and in the computer program developed,
the following have been employed: Koiter’s or Byskov-Hutchinson’s asymptotic
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expansion [2, 5], the numerical transition matrix method using Godunov’s orthog-
onalization method [6, 7].

As has been mentioned above, the fields of displacements Ū and the fields of
sectional forces N̄ have been expanded into power series with respect to the dimen-
sionless amplitude of the web deflection ζn (the amplitude of the n-th free vibration
frequency of the extension system divided by the thickness h1 of the web assumed
to be the first one):

Ū = λŪ
(0)
k + ζnŪ

(n)
k + . . .

N̄ = λN̄
(0)
k + ζnN̄

(n)
k + . . .

(17)

where Ū
(0)
k , N̄

(0)
k are the pre-critical static fields, and Ū

(n)
k , N̄

(n)
k – the first order

fields for the composite k-th web.
After substitution of expansions (13) into equilibrium equations (9), continuity

conditions and boundary conditions (10) ÷ (12), the boundary value problems of the
zero and first order can been obtained. The zero approximation describes the pre-
critical static state, whereas the first order approximation, being the linear problem
of dynamic stability, allows for determination of the eigenvalues, the eigenvector
and the critical speeds of the system.

In the pre-critical static state the panels are divided along their widths into
several strips under uniformly distributed tensile stresses. Instead of the finite strip
method, the exact transition matrix method is used in this case [6].

The inertial forces from the in-plane displacements u and v are neglected. The
pre-critical solution of the k-th composite web consisting of homogeneous fields is
assumed as:

u
(0)
1k = (x1k − `/2)∆k ; u

(0)
2k = −x2k∆kK12k/K22k ;u

(0)
3k = 0 , (18)

where ∆k is the actual loading. This loading is specified as the product of a unit
loading system and a scalar load factor ∆k.

Inner sectional forces of the pre-critical static state for the assumed homogeneous
field of displacements (14) are expressed by the following relationships:

N̄
(0)
1k = −(K11k − K2

12k/K22k)∆k ,

N̄
(0)
2k = 0 ,

N̄
(0)
3k = −(K31k − K32kK21k/K22k)∆k ,

N̄
(0)
4k = −(K41k − K42kK21k/K22k)∆k ,

N̄
(0)
5k = −(K51k − K52kK21k/K22k)∆k ,

N̄
(0)
6k = −(K61k − K62kK21k/K22k)∆k .

(19)

In the second dynamical component of the last Egs (9) there is derivative with
respect to x1 and t. Because of the trigonometric functions incompatibility in the
x1 ≡ x-direction, the Galerkin-Bubnov orthogonalization procedure has been
used to find approximating solution of this equation.

Numerical aspects of the problem being solved for the first order fields have
resulted in an introduction of the following new orthogonal functions with n-th
harmonic for k-th composite web in the sense of the boundary conditions for two
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longitudinal edges [6]:

ā
(n)
k = N

(n)
2k (1 + λ∆kK21k/K22k) + λN

(o)
3k d̄

(n)
k,ξ/bk ,

b̄
(n)
k = N

(n)
3k (1 − λ∆k) + λN

(0)
3k c̄

(n)
k,ξ/bk,

c̄
(n)
k = u

(n)
1k ,

d̄
(n)
k = u

(n)
21k ,

ē
(n)
k = u

(n)
3k ,

f̄
(n)
k = u

(n)
3k,η/bk = ē

(n)
k,η/bk ,

ḡ
(n)
k = N

(n)
5k ,

h̄
(n)
k = hkḡ

(n)
k,η/bk + 2hkN

(n)
6k,ξ/bk + λN

(o)
3k ē

(n)
k,ξ/bk ,

(20)

where ξk = x1k/bk and ηk = x2k/bk.

The solutions of Eq. (9) corresponding to the free support at the segment ends
can be written in the following form:

ā
(n)
k =

N
∑

n=1
Tn(t)Ā

(n)
k (ηk) sin nπbkξ

`
,

b̄
(n)
k =

N
∑

n=1
Tn(t)B̄

(n)
k (ηk) cos nπbkξ

`
,

c̄
(n)
k =

N
∑

n=1
Tn(t)C̄

(n)
k (ηk) cos nπbkξ

`
,

d̄=
k

N
∑

n=1
Tn(t)D̄

(n)
k (ηk) sin nπbkξ

`
,

ē
(n)
k =

N
∑

n=1
Tn(t)Ē

(n)
k (ηk) sin nπbkξ

`
,

f̄=
k

N
∑

n=1
Tn(t)F̄

(n)
k (ηk) sin nπbkξ

`
,

ḡ
(n)
k =

N
∑

n=1
Tn(t)Ḡ

(n)
k (ηk) sin nπbkξ

`
,

h̄=
k

N
∑

n=1
Tn(t)H̄

(n)
k (ηk) sin nπbkξ

`
.

(21)

Tn(t) is unknown function of time and the eigenfunctions have been determined for
the unmoved web (for c =0).

The eigenfunctions Ā
(n)
k , B̄

(n)
k , C̄

(n)
k , D̄

(n)
k , Ē

(n)
k , F̄

(n)
m , Ḡ

(n)
k , H̄

(n)
k (with the n-th

harmonic) are initially unknown functions that will be determined by the numerical
method of transition matrices. The solution assumed in this way allows one to
determine dimensionless sectional forces for the first order approximation in the
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form:

N
(n)
1k =

N
∑

n=1
Tn(t)N̄

(n)
1k (ηk) sin nπ ,bkξ

`
,

N
(n)
2k =

N
∑

n=1
Tn(t)N̄

(n)
21k(ηk) sin nπ bkξ

`
,

N
(n)
3k =

N
∑

n=1
Tn(t)N̄

(n)
3k (ηk) cos nπ bkξ

`
,

N
(n)
4k =

N
∑

n=1
Tn(t)N̄

(n)
41k(ηk) sin nπ bkξ

`
,

N
(n)
5k =

N
∑

n=1
Tn(t)N̄

(n)
5k (ηk) sin nπ bkξ

`
,

N
(n)
6k =

N
∑

n=1
Tn(t)N̄

(n)
6k (ηk) cos nπ bkξ

`

(22)

The obtained system of homogeneous ordinary differential equations has been
solved by the transition matrix method, having integrated numerically the equilib-
rium equations along the circumferential direction in order to obtain the relation-
ships between the state vectors on two longitudinal edges. During the integration
of the equations, Godunov’s orthogonalization method has been employed [7]. The
presented way of solution allows for carrying out a modal dynamic analysis of com-
plex composite webs.

In system of Eqs. (9), (12) and (14) for the unmoved web, there are two compo-

nents of the zero loading N̄
(0)
1k and N̄

(0)
3k . The component N̄

(0)
3k has an insignificant

effect in comparison with N̄
(0)
1k .

The developed computer program allows for a division of each web into several
or even more than 50 strips made of different materials and with various thickness.
The presented solution method enables a multi-modal dynamic analysis.

Let’s return to the case of moving of composite web (for c 6= 0). Because of
the trigonometric functions incompatibility in the x1 direction, after substituting
(21) into the last Eq. (11) the Galerkin-Bubnov orthogonalization method has been
used. In this way the set of N ordinary differential equations with respect to the
function Tn(t) can be determined in the following form:

d2Tm

dt2
a2m +

N
∑

n=1

dTn

dt
a1nm + Tma0m = 0 , m = 1, 2, . . . N . (23)

Substituting the state variables into Eq. (23) one can receive the autonomous set
of 2N first order differential equations with respect to time. On the basis of Eq.
(23) one can determine eigenvalues, eigenvectors and critical speeds of the moving
system.

4. Numerical results and discussion

The numerical investigations has been carried out for the moving microcorrugated
board with trapezoidal flute profile. The composite has been modeled as the thin–
walled laminar construction with rigid core. Under this assumption the classical
laminated plate theory has been satisfied.
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The middle layer of the microcorrugated board one can consider as unidirectional
corrugated trapezoidal plate which is parallel to the x1– direction. The take-up
factor of this profile is small in comparison with overall dimensions of the plate,
so in the macro-mechanical analysis one can treat this layer as orthotropic plate
with major principal material directions parallel to its edges [1, 6, 10]. When
one analyses the corrugated plate with large number of trapezoidal segments, one
can take into account an individual segment, assuming the symmetry conditions
on the longitudinal edges (Fig. 3). In this case, the boundary conditions on the
longitudinal edges are neglected i.e. an infinitely wide trapezoidal plate is taken
into account [16].

 1.0 

 60o 

0.12 
  1.2 

3.25
 1.0 

Figure 3 Cross-section of the corrugated trapezoidal plate segment

Fig. 3 shows geometric dimensions of the corrugated trapezoidal plate segment
[16]. Material properties of this plate are as following: ρ = 750[kg/m3], E1 =
E2 = 2 × 109 [Pa], ν12 = ν21 = 0.2, G = 0.833 × 109 [Pa]. The masses of the
corrugated trapezoidal plate and the substitute orthotropic plate are the same. On
the base of the condition that the stiffness of the corrugated plate and the substitute
orthotropic plate are the same one receives substitute material constants,

To check above results natural frequencies of simply supported substitute or-
thotropic plate model have been compared with analogous values of corrugated
trapezoidal plate for two different lengths l = 1000 mm, l = 100 mm for the m
values: m = 1 ÷ 10. The comparison results are shown in Fig. 4.
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Figure 4 Natural frequencies comparison a) l= 0.1 m; b) l= 1 m

Fig. 4 shows the values of ten lowest eigenfrequencies of both compared systems
for c = 0. These eigenvalues of both systems there are near by, but their the greatest
discrepancy (≈ 7%) one can observe for l = 100 mm and m = 10. Numerical data
of the facing layers and the identification results as the data of the core (Fig. 1) are
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Table 1 Numerical data

Length of the web l 1 m
Width of the web b 0.5 m
Thickness of the facing layer (hF ) 1.2 × 10−4 m
Thickness of the core layer hC 1.2 × 10−3 m
Young’s modulus along the machine direction and along
the cross direction of the facing layer E1F = E2F 2.0 GPa
Poisson’s ratio of the facing layer ν12F = ν21F 0.2
Shear modulus of the facing layer GF 833.3 MPa
Mass density of the facing layer ρF 750.0 kg/m3

Initial stresses N0 5 and 10 N/m
Substitute orthotropic plate

Young’s modulus along the x axis of the core layer E1C 540.0 MPa
Young’s modulus along the y axis of the core layer E2C 1.36 MPa
Poisson’s ratio in the machine direction of the core layer ν12C 0.2
Poisson’s ratio in the cross direction of the core layer ν21C 0.0005
Shear modulus of the core layer GC 0.76 MPa
Mass density of the core layer ρC 110.0 kg/m3

shown in Table 1.

The effect of the corrugated board properties and axial transport velocity on
transverse and torsional vibrations have been studied in numerical investigations.
Let σ and ω denote the real part and the imaginary part of the eigenvalues, respec-
tively. Simultaneously ω is natural frequency of the web. The positive value of σ
indicates instability of the considered system.

Dynamic investigations of axially moving systems were begun from the vibration
modes definition. Fig. 5 shows the modes of two lowest flexural (ω11 and ω21)
and two lowest flexural-torsional (ω12 and ω22) eigenfrequencies of the moving web
system.

Results of dynamic stability investigations of the corrugated board system are
shown in Fig. 6 and 7 for the axial load of the web N0 = 5 N/m and in Fig. 8 for
N0 = 10 N/m. Fig. 6 shows the plot of the four lowest flexural and flexural-torsional
eigenfrequencies versus the transport velocity in the pre-critical and supercritical
regions of the transport speeds. The values of the imaginary part (solid line) and
the real part (dotted line) of the four lowest flexural and flexural-torsional natural
frequencies versus the transport velocity only in supercritical region of the transport
speeds are shown in Fig. 7. The plots in Fig. 6 and 7 show that the lowest natural
frequencies decrease during the axial velocity increase. At the critical transport
speed the fundamental eigenfrequency vanishes indicating divergence instability (the
fundamental mode with non-zero σ and zero ω).

In supercritical transport speeds (c > ccr1), at first the web experiences a di-
vergent instability and above that there is the second stability area where σ = 0.
The width and position of the second stable region are dependent on the thickness
of the composite layers. The second stable area appearance is strictly connected
with the flexural and flexural- torsional eigenfrequencies distribution. In the web
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a)                                                                                               b)

c)                                                                                               d)

Figure 5 Non-trivial equilibrium positions of axially moving web: a) ω11, b) ω21, c) ω12, d) ω22
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Figure 6 Flexural and flexural-torsional natural frequencies, N0 = 5 N/m
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Figure 7 Flexural and flexural-torsional eigenfrequencies in supercritical region of the transport
speed, Nx0 = 5 N/m

systems, where these eigenfrequencies lie near by, the second stable area does not
appear at all.
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Figure 8 Flexural and flexural-torsional natural frequencies, Nx0 = 10 N/m

When the axial load of the board web increases the critical transport speed of the
system increases as well. Above the second stable region at first flutter instability
occurs and next flutter and divergence instability of the web motion appear.

5. Conclusions

In the paper, a new approach to the analysis of the dynamic behaviour of an axially
moving sandwich composite web is presented. Mathematical model of the moving
web system is derived on the basis of asymptotic perturbation method. The math-
ematical model solution is based on the numerical method of the transition matrix
using Godunov’s orthogonalization.

The numerical investigations has been carried out for the moving microcorru-
gated board with trapezoidal flute profile. The composite has been modeled as
the thin–walled laminar construction with rigid core. Under this assumption the
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classical laminated plate theory has been satisfied. The axially moving board web
is treated as thin–walled composite structure in the elastic range, being under axial
extension.

Calculations results of all investigated systems show in the subcritical region of
transport speed for the constant axial tension of the web, the lowest flexural and
flexural-torsional natural frequencies decrease during the axial velocity increase.
At the critical transport speed the fundamental flexural eigenfrequency vanishes
indicating divergence instability. When the axial load of the board web increases
the critical transport speed of the system increases as well.

In the supercritical region of transport speed the second stable area may appear.
The width and position of the second stable region are dependent on the thickness
of the board layers. In the case of the paperboard webs in which the flexural and
flexural-torsional eigenfrequencies lie near by, the second stable area does not appear
at all.
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