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Correction of the Diffusion Equation
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A test problem is investigated and indicate that the conventional foundation of Fick’s
law and the resulting diffusion equation admit mass transfer at relatively high velocity.
This contradicts nature and two independent corrections are made:

1. The front beyond which matier cannot reach; advances with a characteristic speed
dependent on the diffusing substance and the medium;

2. Relativistic type correction in which time dilation and length contraction is taken
in consideration.

In both cases solutions are obtained and discussed.
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1. Statement of the problem

Consider the one dimensional diffusion field defined by O ≤ x < ∞ initially free from
the diffusing substance i.e. C(0, x) = 0 at the instant t = 0, a steady concentration
C(t, 0) = C0 is applied at x = 0. Accordingly, the concentration function C(t, x)
will be the solution of the one dimensional diffusion equation [1]

∂C

∂t
= D

∂2C

∂x2
, (1)

subject to the prescribed initial and boundary condition. This problem admits
solution by similarity [2]
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∂
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;

Accordingly

− η

2t

dC

dη
= D

1

4Dt

d2C

dη2
i.e.

dp

p
= −2ηdη , p =

dC

dη
,

then
p = ke−η2

and
dC = ke−η2

dη ,

integrating from η = 0 (x = 0) to η

C = Co + k̄ erf(η) , k̄ =
2k√
π

, at t = 0 (η = ∞) C = 0 ,

implies
0 = C0 + k̄ erf(∞) therefore k̄ = −C0 ,

giving

C(x, t) = C0

[

1 − erf

(

x

2
√

Dt

)]

. (2)

Now consider small time ǫ together with a large distance 1
ǫ
, therefore

C

(

1

ǫ
, ǫ

)

= C0

[

1 − erf

(

1

2ǫ
√

Dǫ

)]

> 0 ,

indicating matter moves with average velocity 1
ǫ2

which can be very large and con-
tradicts nature, whence corrections must be made.

2. First correction (front advance)

We assume in this problem that matter cannot reach beyond a front which advances
in the direction of diffusion. Suitable assumption about the concentration and its
gradient at this front must be made. Accordingly, Fick’s law must be written as
– the flux density q̇ = −D ∂C

∂x
u(χ(t) − x) where u the unit step function shown in

Figure 1, the diffusion equation (1) will be:

∂C

∂t
= D

∂2C

∂x2
u (χ(t) − x) , 0 ≤ x < ∞ , t ≥ 0 ,

C(0, t) = C0 , C(x, 0) = 0 .

To solve this problem we take the Laplace transform on time and the Fourier sine
transform on x [3]. The transformed function Ĉ will satisfy

Ĉ =
Dω

s(s + Dω2)
+

F̂ (s, ω)

s + Dω2
,
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1

xc(t)

Figure 1

where

F̂ (s, ω) = D

[

∂C

∂x

∣

∣

∣

∣

χ(t)

sin (ωχ(t)) − ωC|χ(t) cos (ωχ(t))

]

.

Inverting transforms gives

C(x, t)

C0
= 1 − erf

(

x

2
√

Dt

)

+
2

π

∫ ∞

0

L−1 F̂ (ω, s)

s + ω2D
sin(ωx)dω = part1 + part2 .

Part 2 admits convolution integral as:

2

π
D

∫ ∞

0

∫ t

0

e−Dω2(t−τ)

[

∂C
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∣

∣

χ(τ)
sin(ωχ(τ))

−ωC|χ(τ) cos(ωχ(τ))

]

(3)

at this stage two possibilities are investigated simultaneously

1) ∂C
∂x

∣

∣

χ(t)
= 0 ,

2) χ(t) = ν(t) , v being a physical constant.

Equation (3) reduces to

− 2

π
D

∫ ∞

0

ω sin ωxe−Dω2t

∫ t

0

eDω2τ C|ντ cos(ωντ)dτdω .

The inner integral can be evaluated by parts as

C|νt

∫ t

0

eDω2τ cos ωντ −
∫ t

0

[∫ t

0

eDω2τ cos ωντdτ

]

dC

dτ

∣

∣

∣

∣

νt

dt ,

it is easily to show that
dC

dτ

∣

∣

∣

∣
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= ν
dC

dx

∣

∣

∣

∣

νt

= 0 ,

and the inner integral reduces to

C|νt

eDω2t
[

Dω2 cos ωνt + ων sinωνt
]

− Dω2

ω2 (D2ω2 + ν2)



102 Correction of the Diffusion Equation

Accordingly, part 2 reduces to
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This relation gives for (x = νt), t

C|νt
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=
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therefore
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. (5)

Solutions (4), (5) can be investigated carefully after evaluating the integral in-
volved, however we point out that solution (4) shows

• At t = 0 the front is at x = 0 will

C0

C0
= 1 =

1

1 − 0 + 0
(correct;)

• at t → ∞ the front → ∞

0 =
0

1 −∞− 0
(correct.)

The integral

I =

∫ ∞

0

e−Dtω2

ω sin ωx

ω2 + β2
dω =

1

2
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Then
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d(Dt)
=

1

2

∫ ∞

0

−Ωe−DtΩ sin
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2
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Let
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e−DtΩ sin
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ΩxdΩ ,
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gives
∂J

∂t
= D

∂2J

∂x2
, J(∞, x) = J(t, 0) = 0 .

The solution is

J = erf

(

x

2
√

Dt

)

and

I =
1

2
e

ν
2

D
t

∫ ∞

0
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D
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(
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√
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)
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by parts, we obtain
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.

Since ν2
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4Dt
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t
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x
2
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√

D

x
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x2

4Dt

τ− 1

2 e−τdτ ≈ 2
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Then we can write
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.

Let
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(
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2
√
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)
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ν
2

D
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x
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.

The integral

I =







= 0 if Γ = 1
> 0 if Γ > 1
< 0 if Γ < 1 .

Substituting in (4)
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Substituting in (5)
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+
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)
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)
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The bracket

erf

(

νt

2
√

Dt

)

− e
ν
2

D
t

(

1 + ln
1

2

)

; α2 =
ν2t

D
= erf(α) − e2α2

(

1 + ln
1

2

)

.

The bracket is positive if e−2α2

erf(α) > 1 + ln 1
2 and is negative if e−2α2

erf(α) <

1 + ln 1
2 and if e−2α2

erf(α) = 0.307 gives α0 = ν2t0
D

= 0.38227. Consequently, it is

essential that the denominator is negative and C(x,t)
C0

will be < 1−erf
(

x

2
√

Dt

)

and

it is not necessary for x to reach ∞ that C → 0.

3. Second correction

Relativistic proper time and space if the frame x, t of the equation

∂C

∂t
= D

∂2C

∂x2
,

are the proper time and position, then in the stationary frame the equation should
read

∂C

∂t
= D

∂2C

∂x2

(

1 − ν2

c2

)
3

2

,

Lorentz transformation [4]. If C is observed in the neighborhood of a typical particle
(the neighborhood size is determined by the mean free path) then x, t are related
by

d

dt
= ν

d

dx
,

where ν, is the velocity of the particle and in this neighborhood

ν
dC

dx
= D

d2C

dx2

(

1 − ν2

c2

)
3

2

, (8)

the moving particle has the equation of motion (free diffusion)

mν
dν

dx
= −6πµaν , Stoke’s law [5].

Here, m is mass of particle, a – diameter of particle (considered spherical), µ is
viscosity of medium which gives

ν = ν0 −
6πνa

m
(x − x0) . (9)
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Let p = dC
dx

, equation (1) can be written in the form

dp

p
= − m

6πµaD

νdν
(

1 − ν2

c2

)

3

2

,

integrate

ln
p

p0
= −2

mc2

6πµaD





1
√

1 − ν2

c2

− 1
√

1 − ν2

0
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 ,

then

p ≈ p0



1 − 2
mc2

6πµaD





1
√

1 − ν2

c2

− 1
√

1 − ν2

0

c2







 ,

retaining only the first binomial expansion. But

dC

dx
= −dC

dν

6πµa

m
,

therefore

C(ν) − C(ν0) = p0



−(ν − ν0)
mc

6πµa
+ 2

mc2

(6πµa)2D





ν − ν0
√

1 − ν2

0

c2

− (ν − ν0)









and

C(x) = C(x0)−

|p0|







(x − x0)



1 + 2 mc2

6πµaD





1
√

1−
ν2

0

c2

− 1















Test problem x0 = 0, C(x0) = 1

C(x) = 1 − |p0|(x)









1 + 2
mc2

6πµaD





1
√

1 − ν2

0

c2

− 1















. (10)

Two physical constraints on C exist namely; C ≥ 0, C ≤ 1, indicating xmax for
C = 0 such that

xmax =
1

|p0|









1 + 2mc2

6πµaD





1
√

1−
ν2

0

c2

− 1















. (11)

It is clear that if ν0

c
correction is neglected x → ∞, otherwise we have a finite xmax.
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4. Example

Fine carbon particles from rocket exhaust in ambient air [6]. a = 10−6 m, m =
12×1.67×10−27 kg, D = 0.52×10−5 m2/s, µ = 2.57×10−5 kg s/m2, c = 3×108 m/s,
ν0 = 104 m/s (escape velocity).

xmax =
1

|p0|









1 + 2mc2

6πµaD





1
√

1−
ν2

0

c2

− 1















=
1

|p0| × 1.25 × 102
.

The dust will spread a distance 1000 m, if |p0| = 0.08.

| |p0 1

| | >p0 1 | |p0 2

| |p0 2

x xmax1 max2<

0 x

Figure 2

Fig. 2 shows that if |p0| increases then xmax decreases.

5. Conclusions

In the two suggested corrections we succeeded in finding xmax where it is not nec-
essary for x to reach ∞ that C should tend to zero. It might be argued that the
relativistic correction may not be acceptable since actual velocities in diffusion are
far below speed of light. However we point out that from the qualitative point of
view the relativistic correction proved possible. The front corrections adds to the
problem of diffusion another physical constant i.e. the front speed ν which will
depend on both the medium and the diffusing substance and must be determined
together with the diffusion constant D.
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