
Mechanics and Mechanical Engineering
Vol. 7, No. 1 (2004) 97–106
c© Technical University of Lodz

Buckling and Initial Post-Buckling Behaviour of Thin-Walled Elliptic

Shells under Bending

Marian KRÓLAK
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The problem of the buckling and the initial post-buckling equilibrium paths of thin-
walled cylindrical and elliptic shells subjected to bending has been carried out. Shell
elements can be made of multi-layer orthotropic materials. The problem has been solved
within the first order approximation of Koiter’s asymptotic theory, using the transition
matrix method.
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1. Introduction

Vessels of tank trucks, tank wagons, as well as vessels of truck-wagons (bimodal
tanks) can be examples of thin-walled structures built of thin cylindrical or elliptic
shells [6]. A tendency towards a small mass of these structures causes that very
thin shells of these vessels are exposed to a local loss of stability. Both freestanding
horizontal vessels supported at their ends, as well as tank wagon vessels with a
completely self-supporting structure are subject to bending and compression, it
means, to loads that result in a loss of stability of the vessel shell. Particularly in
the latest designs of tank wagons in which a vessel is fixed permanently with two
skid rails (longitudinal thin-walled beams), the longitudinal forces are carried both
by these skid rails and by the vessel shell. At considerable lengths of tank wagon
vessels (L < 15 m) and their large diameters (D < 3.2 m), thin shells of these vessels
are very supple to bending, and thus pliant to a loss of stability. Many aggressive
chemicals require that the vessel shells should be made of composite materials. In
the present paper an analysis of stability and initial post-buckling behaviour of
thin-walled cylindrical and elliptic shells made of orthotropic materials subjected
to bending and compression along the generating lines will be carried out.



98 Buckling and Initial Post-Buckling Behaviour ...

An evaluation of the load-carrying capacity of the shells under analysis on the
basis of the solutions obtained for the first and the second order non-linear approx-
imation of Koiter’s asymptotic theory of stability is planned as the next stage of
these investigations.

2. Formulation of the Problem

Let us consider cylindrical shell elements with closed or open cross-sections and
with one axis of symmetry at least.

The shell elements under consideration can be multi-layer walls made of or-
thotropic materials, but the properties of the adjacent layer materials (the moduli
of elasticity in particular) cannot differ in a radical way. The materials the shell
elements are made of are subject to Hooke’s law.

The shells under consideration can be loaded with bending in the plane of sym-
metry of the cross-section (flat bending). The aim of this study is to generate the
stability equations and to solve the stability problem (to find the values of the criti-
cal load of local and global buckling), as well as to determine the initial equilibrium
paths in the elastic post-buckling state for the shells.

3. Solution of the Problem

The problem has been solved by the variational method using Koiter’s asymptotic
theory of conservative systems [3]. In the solution of the problem and in the com-
puter program developed, the following have been employed: Byskov-Hutchinson’s
asymptotic expansion [1], the numerical transition matrix method [10] using Go-
dunov’s orthogonalization method [4-6].

The non-linear geometrical relationships for the cylindrical shell segment have
been assumed in the form:

ε1 = u1,1 + 0.5um,1um,1

ε2 = u2,2 + 0.5um,2um,2 − k2u3

ε3 = 0.5(u1,2 + u2,1) + 0.5um,1um,2

κ1 = −u3,11

κ2 = −u3,22 − k2u2,2

κ3 = 2u3,12 − k2u2,1

(1)

where k2 = 1/R = 2/D is the curvature of the cylindrical shell segment, and the
summation with respect to the factor m is from 1 to 3 (m = 1, 2, 3).

The physical equations have been taken in the classical form as for linear-elastic
orthotropic materials. It has been assumed that the hypothesis of the normal
straight line (Kirchhoff’s hypothesis) holds in multi-layer walls.

The equilibrium equations resulting from the virtual work principle have been
obtained in the following form:

[N1(1 + u1,1) + N3u1,2],1 + [N2u1,2 + N3(1 + u1,1)],2 = 0

[N1u2,1 + N3(1 + u2,2) − k2tN6],1 + [N2(1 + u2,2) + N3u2,1 − k2tN5],1 = 0

(tN4,1 + N1u3,1 + N3u3,2),1 + (tN5,2 + 2tN6,1 + N2u3,2 + N3u3,1),2 + k2N2 = 0

(2)
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In the above equations, N1, N2, N3 are the dimensionless sectional forces; N4,
N5, N6 - the dimensionless sectional moments, whereas u1 ≡ u, u2 ≡ v, u3 ≡
w – the components of the displacement vector in the x1 ≡ x, x2 ≡ y, x3 ≡
z axis direction, respectively. The solution of these equations for each element
should satisfy kinematic and static continuity conditions at the junctions of adjacent
elements and the boundary conditions referring to the free support of the structure
at its both ends, i.e. x=0 and x=L.

As has been mentioned above, after expanding the fields of displacements Ūk and
the fields of sectional forces N̄k into power series with respect to the buckling mode
amplitudes ζn (the amplitude of the n-th buckling mode divided by the thickness
t of the wall assumed to be the first one), Koiter’s asymptotic theory has been
employed:

Ūk = λŪ
(0)
k + ζnŪ

(n)
k + ...

N̄k = λN̄
(0)
k + ζnN̄

(n)
k + ...

(3)

where Ū
(0)
k , N̄

(0)
k are the pre-buckling state fields, and Ū

(n)
k , N̄

(n)
k – the n-th buckling

mode fields. The range of indices is [1, J ], where J is the number of interacting
modes.

After substitution of expansions (3) into the equilibrium equations (2), the junc-
tion conditions and the boundary conditions (corresponding to the free support at
the vessel ends), the boundary problem of the zero (prebuckling state) and the first
order approximation can been obtained.

The plates with linearly varying prebuckling stresses along their widths are
divided into several strips under uniformly distributed compressive (tensile) stresses.
Instead of the finite strip method, the exact transition matrix method is used in
this case.

The zero approximation describes the pre-buckling state, whereas the first order
approximation, being the linear problem of stability, allows for determination of
values of critical loads, buckling modes, and initial post-buckling equilibrium paths
[4-6]. The obtained system of homogeneous ordinary differential equations, with the
corresponding conditions of the co-operation of elements, has been solved by the
transition matrix method, having integrated numerically the equilibrium equations
along the circumferential direction in order to obtain the relationships between the
state vectors on two longitudinal edges. During the integration of the equations,
Godunov’s orthogonalization method is employed. The global buckling occurs at
one sinusoid half-wave on the column length, whereas the local buckling takes place
at the number of half-waves m > 1.

The developed computer program allows for a division of each shell element into
several or even more than 40 strips made of different materials and with various
thickness. A detailed description of the solution method of the problem under
discussion, analogous as in the case of plate structures, has been included in Refs.
[4-6].

At the point where the load parameter λ reaches its maximum value λs (sec-
ondary bifurcation or limit point) for the imperfect structure with regard to the
imperfection of the buckling mode with the amplitude ζ∗r , the Jacobian of the non-
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linear system of equations [4,5]:

ar (1 − λ/λr) ζr + ajkrζjζk + ... = arλ/λrζ
∗

r at r = 1, 2, . . . J (4)

is equal to zero.
The index r is: 1 – for the global bulking mode; 2 . . . J – for the local buckling

modes.
The corresponding expression for the total elastic potential energy of the struc-

tures has the following form:

Π = −a0λ
2/2 + ar (1 − λ/λr) ζ2

r /2 + ajkrζjζkζr/3 − arζrζ
∗

r λ/λr (5)

where: λ – load parameter, λr – critical value of λ, a0λ
2/2 – energy of the pre-

buckling state.
Expressions for a0, ar, ajkr are calculated by known formulae [4,5]. The formulae

for the post-buckling coefficients ajkr depend only on the buckling modes.
Consideration of displacements and load components in the middle surface of

the walls within the first order approximation, as well as more precise geometrical
relationships enabled an analysis of the shear–lag phenomenon, the distortions of
cross-sections and all possible buckling modes, including a mixed buckling mode.

In the presented method, it is postulated that the reduced local critical load λR

should be determined taking into account the global pre-critical bending (ζ∗1 6= 0)
within the first order non-linear approximation to the theory of the interactive
buckling of the structure [1,8].

In order to find the lower bound estimation of the load-carrying capacity of
thin-walled structures, the following assumptions have been made [8]:

• an interaction of only two modes of the global and local buckling within the
first order approximation has been taken into account, i.e. J = 2;

• local imperfections are absent, i.e. ζ∗2 = 0.

If we take into account the above-mentioned assumptions, Eq. (4) leads to the
following set of algebraic equations of equilibrium [8]:

a1 (1 − λ/λ1) ζ1 + a122ζ
2
2 = a1ζ

∗

1λ/λ1

a2 (1 − λ/λ2) ζ2 + 2a122ζ1ζ2 = 0
(6)

All coefficients with j, k, r > 1 are equal to zero and non-zero coefficients are
only those that have one index equal to 1 and an even sum of (j+k). If we introduce
the following notation:

ϑ = (λ/λ2 − 1) /ζ1 (7)

the second equation (6B) can be written in the form of an eigenvalue problem:

(2a122/a2 − ϑ) ζ2 = 0 (8)

In the pre-buckling state, the single solution to Eq. (8) is a trivial solution
ζ2 = 0 and only the overall deflection develops according to Eq. (6A):

ζ1 = ζ∗1λ/(λ1 − λ) (9)
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The coupled (interactive) buckling with simultaneous overall and local deflec-
tions becomes possible when there appears a non-zero solution ζ2 6= 0 to the set of
Eqs. (6). Note that the sign of ϑ = 2a122/a2 determines the direction of the overall
deflection according to the condition ϑζ1 < 0.

The eigenvector from Eq. (8) has been determined with an accuracy up to the

constant C and it has been normalised with the condition
[

(

ζ0
2

)2
]1/2

= 1.

As the initial post-buckling path for the first order approximation always falls,
the maximal value λ = λR corresponds to the value C = O (the point of intersection
of the pre-buckling path (9) and the initial post-buckling path (7)). Then:

[

ζ∗1
λR

λ1
+

(

1 −
λR

λ1

) (

1 −
λR

λ2

)

1

ϑ

]

= 0 (10)

The maximum load value λR determined from Eq. (10) is smaller than the
critical value of the local buckling λ2. The load λR can be interpreted as an influence
of the load corresponding to the global buckling (ζ∗1 6= 0, ζ1 6= 0) on the critical
value of the local load (ζ2 = 0). Thus, the critical load corresponding to λR can be
called the reduced critical load value of the local buckling.

4. Analysis of the Problem

A detailed analysis has been carried out for elliptic vessels subjected to pure bend-
ing. The following geometrical dimensions of the vessels have been assumed:

• cylindrical vessel [7]: k = b
a = 1;

R =
D

2
= a = b = 1300 mm, h = 3 mm

• elliptic vessel: k = b
a = 0.8; a = 1435.6 mm, b = 1148.5 mm, h = 3 mm;

• elliptic vessel k = b
a = 0.6; a = 1576.5 mm, b = 945.9 mm, h = 3 mm.

where a and b are the mean lengths of the ellipsis axes, whereas k = b
a is the affinity

coefficient of the ellipsis with respect to the semi-major axis.
It has been assumed that the vessels made of an isotropic material with the

following material constants:

G =
E

2(1 + ν)
; ν = 0.3

are subject to pure bending with respect to the semi-major axis of the ellipsis.
In Fig. 1 the dimensionless values of the critical load σ∗ = σcr103/E for the

vessels under analysis as a function of the number of half-waves m that generate
along the vessel length when the vessel length is assumed to be L = 12 500 mm
(identically as in [7]) are shown. The critical values σ∗ corresponding to the number
of half-waves m = 1 are the critical values of the global buckling of the vessels
under bending, whereas for m > 1 they are the critical values of the local buckling.
The assumed theory and the problem solution method allows one to describe the
effect occurring during the global buckling of shells under bending, i.e. the Brazier
effect [9].
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Figure 1 Dimensionless critical stress σ
∗ carried by the number of half-waves m. Curves: 1 –

k = 1.0; 2 – k = 0.8; 3 – k = 0.6

In Table 1 the obtained values of critical loads and the respective values of
bending moments on the assumption that E = 200 GPa are given. Additionally,
the number of half-waves m that generate along the vessel length for the values of
the local critical load is given as well.

Table 1 Critical values of loads for the vessels under bending

Global buckling Local buckling
σ∗ ≡ σ∗

g M [kNm] σ∗ ≡ σ∗

l M [kNm]

k = 1.0 2.106 6700 1.405 (m=113) 4470
k = 0.8 1.853 5460 1.064 (m=98) 3135
k = 0.6 1.538 4535 0.847 (m=88) 2495

To verify the presented values of critical loads, the numerical calculations were
made with the well-known commercial ANSYS v.5.7 Finite Elements package.
In order to simulate a loading condition that gives origin to bending moment only,
a stiffened ring was applied at both ends of the tube, identically as was done by
Guarracino [2]. A good agreement of local values of critical loads obtained by
means of these two methods was reached. The computational results referring
to the cylindrical shell for L

D = 2.0 are presented below. The critical load value
obtained with MES is equal to Mcr = 4873 [kNm], its respective buckling mode is
shown in Fig. 2, whereas the theoretical analysis result is Mcr = 4470 [kNm] (see
Table 1 – case k = 1.0).

The subsequent three figures (Fig. 3–5) show: the ratio of the global critical

load to the lowest value of the local critical load
σ∗

g

σ∗

l

(curve 1), the ratio of the
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Figure 2 Buckling mode by ANSYS5.7

reduced local critical load to the lowest local critical load
σ∗

R

σ∗

l

for two values of the

global imperfection ς∗g = L
1000h (curve 2), ς∗g = 1.0 (curve 3), and the ratio of the

theoretical load-carrying capacity within the first order non-linear approximation

to the lowest local critical load
σ∗

s

σ∗

l

for the assumed imperfections ς∗g =
∣

∣

L
1000h

∣

∣,

ζ∗l = |0.2| as a function of the vessel length L
D = L

2R (curve 4) for k = 1.0, 0.8 and
0.6, respectively.
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Figure 3 Relationship between dimensionless stresses and L

D
for k = 1.0

It should be emphasised that the lowest values of the local critical loads σ∗

l are
constant in practice for the length variability range under consideration (0.5 ≤ L

D <

4.8). The assumed level of the global imperfections ς∗g = L
1000h is the most often
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assumed value of imperfections of thin-walled structures in Eurocodes.
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Figure 4 Relationship between dimensionless stresses and L

D
for k = 0.8
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Figure 5 Relationship between dimensionless stresses and L

D
for k = 0.6

In the majority of thin-walled vessels under bending, bulkheads or partitions
that most often limit the buckling length corresponding to the Brazier effect up
to approximately L

D = 0.5 are used along the vessel length. In such a case if the
influence of the global pre-critical bending on the local value of the local load is taken
into consideration, it reduces the critical load up to 30-50% for the magnitudes of
imperfections under investigation, whereas in the case the coupled buckling is taken
into consideration – up to 60%. It should be remembered that the determined
values of the local critical loads refer to the upper critical load. Thus, if the global
pre-critical bending or the coupled bending is taken into account, then it is possible
to estimate better the load-carrying capacity in the post-buckling state than by
means of the linear analysis of stability. A more thorough analysis of buckling of
vessels under bending can be carried out when the second order approximation is
taken into account, which has not been the subject of the present investigations.
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5. Conclusions

The presented theory and the solution method of the buckling problem of elliptic
vessels under bending allows one to take into account the Brazier effect, as well as
to estimate correctly the reduced values of critical loads and the theoretical load-
carrying capacity.
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