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Advanced mechanical and structural applications require accurate assessment of the
damage state of materials during the fabrications as well as during the service. Due to the
complex nature of the internal structure of the material, composites including the layered
composite often fail in a variety of modes. The failure modes very often are influenced
by the local material properties that may develop in time under heat and pressure,
local defect distribution, process induced residual stress, and other factors. Consider
a laminate composite in plane stress conditions, multi-layered beam bonded to planes
having shear modulus Gi and Poisson’s ratio νI respectively, subjected to bending. The
behaviour of the cracks depends on the cracks configuration, size, orientation, material
properties, and loading characteristic. The fracture mechanics problem will be attacked
using the photoelastic visualization of the fracture events in a model structure. The
proposed experimental method will developed fracture mechanics tools for a layered
composite fracture problem.

Keywords: composites, reinforced beams, fracture mechanic, photoelastic method, finite
element method.

1. Introduction

The development of the failure criterion for a particular application is also very
important for the predictions of the crack path and critical loads.

Recently, there has been a successful attempt to formulate problems of multiple
cracks without any limitation. This attempt was concluded with the series of papers
summarizing the undertaken research for isotropic [2], an isotropic [4] and non-
homogeneous class of problems [5] and [4].

Crack propagation in multi-layered composites of finite thickness is especially
challenging and open field for investigation. Some results have been recently re-
ported in [5]. The numerical calculations were carried out using the finite element
programs ANSYS 5.4 and 5.6 [11]. Two different methods were used: solid modeling
and direct generation.
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2. Material properties

Material properties exert an influence on the stress distribution and concentration,
damage process and load carrying capacity of elements. In the case of elastic-
plastic materials, a region of plastic strains originates in most heavily loaded cross-
sections. In order to visualize the state of strains and stresses, some tests have been
performed on the samples made of an ”araldite”-type optically active epoxy resin
(Ep-53), modified with softening agents in such a way that an elastic material has
been obtained. Properties of the components of experimental model are given in
Table 1.

Table 1 Mechanical properties of the experimental model components

Layer Young’s Poisson’s ratio Photoelastic Photoelastic
modulus in terms constants constants

of stresses in terms of stresses in terms of strain
Ei [MPa] νi[1] kσ [MPa/fr.] fε[−/fr]

1 3450.0 0.35 1.68 6.572 ·10−4

2 1705.0 0.36 1.18 9.412 ·10−4

3 821.0 0.38 0.855 14.31 ·10−4

4 683.0 0.40 0.819 16.79 ·10−4

3. Experimental Results

The stress distribution in was determined using two methods: Shear Stress Dif-

ference Procedure (SDP – evaluation a complete stress state by means the
isochromatics and the angles of the isoclines along the cuts) [3]. Method of the

characteristics (the stress distribution were determined using the isochromatics
only and the equations of equilibrium [10]. In a general case [7], the Cartesian
components of stress: σx , σy and τxy in the neighbourhood of the crack tip are:
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By inserting the values kσ ·mi = σ1 −σ2 into (1) we obtain the isochromatic curves
in polar coordinates (r,Θ). For each isochromatic loop the position of maximum
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angle Θm corresponds to the maximum radius of the rm. This principle can also
be used in the mixed mode analysis [7] by employing information from two loops
in the near field of the crack, if the far field stress component – σox(Θ) = const.
Differentiating eqn (2) with respect to Θ, setting Θ = Θm and r = rm and using
∂τm/∂Θm = 0 gives:

g(KI ,KII , σox) = 1
2πr
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Figure 1 (a) Four-layer beam with cracks. Photoelastic model under four point bending, the
isochromatic patterns (σ1 − σ2) distribution, (b) initial loading (P=20.0 N), (c) P=50.0 N -
tension of layers 2, 3 and 4.

Substituting the radii rm and the angles Θm from these two loops into a pair of
equations of the form given in eqn (3) gives two independent relations dependent



18 Models of the Fracture Harmonic Vibration the Multi-Layered Composites

on the parameters KI , KII and σox. The third equation is obtained by using eqn
(2). The three equations obtained in this way have the form

gi(KI ,KII , σox) = 0

gj(KI ,KII , σox) = 0 (4)

fk(KI ,KII , σox) = 0

In order to determine KI , KII and σox it is sufficient to select two arbitrary
points ri, Θi and apply the Newton-Raphson method to the solution of three si-
multaneous non-linear equations (4). The values KC according to mixed mode of
the fracture were obtained from

KC =
√

K2
I + K2

II (5)
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Figure 2 The isochromatic patterns (σ1 − σ2) distribution according to the propagation of the
crack obtained experimentally

By inserting the values ri, Θi in three selected arbitrary points into (2) we obtain
three non-linear equations (i = 1, 2, 3)

fi(KI ,KII , σox) = 0 (6)

and apply the Newton-Raphson method to the solution we have KI , KIIand σox.
Example of the numerical results (shown in Fig. 3) obtained from (6) for: m1 =
12.5, r1 = 0.72 mm, Θ1 = 1.484, m2 = 8.0, r2 = 1.15 mm, Θ2 = 1.37, m3 = 5.5 mm,

r3 = 1.85, Θ3 = 1.315, K
(4)
I = 0.702 MPa

√
m, K

(4)
II = 1.043 MPa

√
m, σox = 0.152

MPa, K
(4)
C = 1.257 MPa

√
m.



Jaroniek, M 19

P=540N
-15.41MPa

m=4.55

3.72MPa

5.5 MPa

2.95MPa
m=2.95

5.77MPa

m=4.1

sx

3.98MPa

m=6.25

Mg=27000Nm

A

A

m=3.5

-3.54MPa

-5.88 MPa

e=4.5mm

P=540N
-17.64MPa

2.78 MPa

2.57

5.51 MPa

2.95 MPa

41.1 MPa

sx

5.45 MPa

Mg=29700Nmm

BS

BS

-3.45MPa

-4.29 MPa

0.5 mm

Figure 3 Distribution of stresses σx in cross-sections A–A and B–B 0.5mm with respect to crack
obtained experimentally

4. Numerical Determination Of Stress Distribution

The distribution of stresses and displacements has been calculated using the finite
element method (FEM) [12]. Finite element calculations were performed in order
to verify the experimentally observed the isochromatic distribution observe during
cracks propagation. The geometry and materials of models were chosen to corre-
spond to the actual specimens used in the experiments. The numerical calculations
were carried out using the finite element program ANSYS 6.1 and by applying the
substructure technique. For comparison the numerical (from FEM) and experimen-
tal sochromatic fringes (σ1−σ2), distribution was shown in Fig. 3. A finite element
mesh of the model (used for numerical simulation) are presented in Fig. 5 and the
stresses σx are shown in Figs. 6 and 7.

Figure 4 A finite element mesh of the model (for numerical simulation)
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Figure 5 Numerical determination of stress distribution (ANSYS 5.4). Distribution of the stresses
σx along the crack

The strain energy release rate GC equal in this case to the Rice J-integral:
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or from numerical calculation using the finite element method:
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The values KC according to the fracture in the 4-layer were determined from

K
(i)
C =

√

Ei · GC (9)

Figure 6 Numerical determination of stress distribution (ANSYS 5.4). Distribution of the stresses
σx (cracks length a=6.0 mm)
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(a) =6 mma

(b) =9 mma

Figure 7 Numerical results: (ANSYS 5.4). Distribution of the stresses σx, cracks length (a)
a = 6.0 mm and (b) a = 9.0 mm, thickness of layers h = 10 mm

Table 2 Experimental and numerical results. Critical values K
(1)
IC

according to the propagation

of the crack and K
(2)
IC

Crack length Critical force Experimental results Numerical results
a [mm] Pcr [N] [MPa

√
m] [MPa

√
m]

a Pcr K
(4)
I K

(4)
II K

(4)
C σOX G

(4)
C K

(4)
C n

6.0 265.0 1.177 0.8793 1.419 2.58 3.08 1.45

9.0 205.0 0.702 1.043 1.257 0.152 2.39 1.28

9.8 185.0 0.14 1.05 1.05 0.039 1.97 1.16
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5. Conclusions

Photoelasticity was shown to be promising in stress analysis of beams with various
number and orientation of cracks. It is possible to fabricate a model using various
photoelastic materials to model multi layered structure. Finite element calculations
(FEM) were performed in order to verify the experimentally observed branching
phenomenon and the isochromatic distribution observed during cracks propagation.
The agreement between the finite element method predicted isochromatics-fringe
patterns distribution and those determined photoelastically was found to be within
3÷5 percent.
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