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The aim of this paper is a numerical study of laminar double difiusive free convection vis-
cous flows adjacent to a vertical plate, taking into account the variation of the viscosity
and double-diffusive heat and mass transfer with temperature. The governing conserva-
tion equations of mass, momentum, energy and chemical species arc non-dimensionalized
by using appropriate transformations. The resulting equations are solved numerically
by using the fourth order Runge-Kutta integration scheme along with the Nachtsheim-
Swiger shooting technique. It is noticed that both the velocity and concentration of
air are increasing as the parameter β2, (the species diffusion parameter) increases, but
an opposite effect for the velocity is observed at a certain distance far from the plate.
It is also observed that the temperature decreases as the parameter β2 increases. The
shearing stress at the plate, the local Nusselt number and the local Sherwood number
are obtained. The friction coefficient at the plate, of heat and mass transfer at the plate,
the momentum, thermal and concentration boundary layers thickness (δ, δT , δC) have
been estimated for different values of α, Sc and N .
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1. Introduction

Natural convection flows driven by temperature differences have been extensively
studied by Gebhart te al. (1971), Gebhart and Pera (1971); Jaluria and Gebhart
(1974); Jaluria (1980); Ostrach (1980); Elbashbeshy and Ibrahim (1993); Mongruel
et al. (1996); Kuan-Tzong Lee (1999); Saddeek (2000) and other authors. Geb-
hart and Pera (1971) studied laminar natural convection flows driven by thermal
and concentration buoyancy forces adjacent to a vertical plate. They presented
similarity solutions and also investigated the laminar stability of such flows. Pera
and Gebhart ( 1972) extended their previous work to flows for horizontal plate.
Williams, et al. (1987) assumed a plate temperature that varies with time and
position and found possible semi similar solutions for a variety of classes of wall
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temperature distribution. Eltayeb and Loper (1991) studied the stability of verical
orienited double diffusive interfaces having an imposed vertical stable temperature
gradient. The influence of variable viscosity on laminar boundary layer flow and
heat transfer due to a continuously moving flat plate is examined by Pop, et al.

(1992). Ibrahim and Ibrahim (1984) obtained a solution for the variable viscos-
ity flow of a dilute suspension between two parallel plates taking into account two
different forms for the viscosity-temperature relation.

A numerical study of natural convection flows due to the combined buoyancy of
heat and mass diffusion in a thermally stratified medium was obtained by Angirasa
and Srinivasan (1989). They assumed that the viscosity, the thermal diffusivity and
the mass diffusion coefficients are constants. The problem of free convection flow of
a Newtonian fluid having variable viscosity and thermal diffusivity along an isother-
mal vertical plate was studied by Elbashbeshy and Ibrahim (1993). Mongruel, et al.

(1996) investigated natural convection driven by two buoyancy sources, such as heat
and mass, in vertical boundary layer starting from the integral equations and using
scale analysis to derive the different asymptotic flow regimes encountered with dif-
ferent buoyancy forces and diffusion coefficients. The natural convection heat and
mass transfer in vertical parallel plates with discrete heating has been studied by
Kuan-Tzong Lee (1999). The effect of variable viscosity on hydromagnetic flow and
heat transfer past a continuously moving porous boundary with radiation is studied
by Saddeek, (2000). He assumed that the fluid viscosity varies as an inverse linear
function of temperature.

In all the above studies the effects of variable viscosity, thermal and mass diffu-
sivities (together) on the flow field have not been considered yet.

In the present study, we extend the works of Angirasa and Srinivasan (1989);
Elbashbeshy and Ibrahim (1993) and Mongruel, et al. (1996), taking into account
the dependence of mass diffusivity on temperature because it is well known that in
many natural and technological processes the temperature and concentration dif-
ferences occur simultaneously. Such processes occur in cleaning operations, drying,
crystal growth, solar ponds and photosynthesis. For this reason we will see the
effect of the variable concentration on the motion of the fluid. The Boussinesq
approximation is used in the equation of motion.

Figure 1 Flow near the plate
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2. Formulation of the problem

We consider convection flow near a vertical plate with variable viscosity, thermal
and mass diffusivities. Let the Cartesian coordinates x and y move in the direction
of the plate vertically upward and normal to the plate respectively as in Figure 1.
Consider the temperature of the plate is T0 and the concentration of the diffusing
species at the plate is C0. Let the temperature and concentration at infinity are
T∞ and C∞ respectively. We assume that the density of the fluid (Mongruel et al.,
(1996)) is

ρ = ρ∞ [1 − βT (T − T∞ − βC(C − C∞)] ,

where ρ is the density of the fluid, ρ∞ is the density at infinity, βT and βC are the
coefficients of the thermal and mass expansion, respectively; T is the temperature
of the fluid; C is the concentration. The flat plate is heated in such way, that
the pressure in each horizontal plane is equal to the hydrostatic pressure and thus
it is constant. By using the Boussinesq approximation one can write the basic
governing equations which are the conservation of mass, momentum, heat and mass
as (Gebhart (1971) and Elbashbeshy and Ibrahim (1993)):
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where u, v are the components of the velocity of the fluid in x and y directions
respectively; µ is the viscosity coefficient of the fluid; g is the constant acceleration
due to gravity; K is the thermal diffusivity; D is the mass diffusivity. The boundary
conditions which are associated with equations (1)–(4) are

u = v = 0 , T = T0 , C = C0 , at y = 0 (5)

and
u → 0 , v → 0 , T → T∞ , C → C∞ at y → ∞ . (6)

The continuity equation (1) is satisfied by the stream function Ψ(x, y), which is
defined by

u =
∂Ψ

∂y
, v = −

∂Ψ

∂x
. (7)

To transform the partial differential equations (2)–(4) into a set of ordinary
differential equations, the following dimensionless variables are introduced (Gebhart
(1971)):
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1
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,
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where η is the dimensional distance from the plate, ν∞ is the kinematic viscosity

at infinity, Gr(x) = gβT (T−T∞)x3

4ν2
∞

is the Grashof number, φ(η) is the dimension-

less stream function, θ is the dimensionless temperature, γ is the dimensionless
concentration. The variations of viscosity, thermal diffusivity and mass diffusion
coefficients with dimensionless temperature are written in the form: (Schlichting
(1968); Pop, et al. (1992) and Elbashbeshy and Ibrahim (1993))

µ

µ∞

= e−αθ , (9)

K

K∞

= 1 + β1θ , (10)

D

D∞

= 1 + β2θ , (11)

where α, β1 and β2 are parameters depending on the nature of the fluid and µ∞,
K∞ and D∞ are the values of µ, K and D as η → η∞ (where η∞ is the maximum
value of η ). By using the transformations (8) and equations (9), (10) and (11)
equations (2)–(4) transform into

φ′′′ + φ′′[3φeαθ − αθ′] + eαθ[θ + Nγ − 2φ′2] = 0 , (12)
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where N , Pr and Sc are buoyancy ratio, Prandtl and Schmidt numbers, respectively.
They are given by

N =
β2(C0 − C∞)

β1(T0 − T∞)
, P r =

ν∞

K∞

and Sc =
ν∞

D∞

. (15)

The boundary conditions (5) and (6) transform to

φ = 0 , φ′ = 0 , γ = 1 , at η = 0 , (16)

φ′ → 0 , θ → 0 , γ → 0 , as η → ∞ . (17)

Neglecting the effect of the variation of concentration on the motion of the fluid,
with N = 0, we will obtain the same equations as those obtained by Elbashbeshy
and Ibrahim (1993). Also in the case of α = β1 = β2 = 0, equations (12)–(14)
will reduce to those equations of Mongruel, et al. (1996) with the same boundary
conditions (16) and (17).

3. The primary physical quantities of interest

(i) Boundary layer thickness (δ) has been regarded as that distance from the
plate where the velocity at its end (φ′) has approximate value equal to 0.01
[Schlichting (1968)]

δ = η|φ′=0.01 . (18)
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(ii) Thermal boundary layer thickness (δT ) is defined in the same manner as

δT = η|θ=0.01 . (19)

(iii) Concentration boundary layer thickness (δC) is also defined as

δC = η|γ=0.01 . (20)

(iv) The shearing stress on the plate is given by

τw =

[

µ
∂u

∂y

]

y=0

=
4A

3

4 µ2
0

ρ
x

1

4 e−αφ′′(0) , (21)

where φ′′(0) is the friction coefficient at the plate. The dimensionless shearing
stress at the plate is defined as
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(v) The local Nusselt number Nu(x) for heat transfer is defined as
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where θ′(0) is the rate of heat transfer at the plate.

(vi) The local Sherwood number Sh(x) is finally defined as
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1
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where γ′(0) is the rate of mass transfer at the plate.

4. The numerical solution

The set of nonlinear ordinary differential equations (12)–(14) along with the bound-
ary conditions (16) and (17) have been solved using a fourth order Runge-Kutta
integration scheme with the Nachtsheim-Swiger shooting technique (1965). This
problem is a mixed condition, in which both conditions at the plate (η = 0) and
at infinity (η∞) are given. The initial conditions φ′′(0), φ′(0), φ(0), θ(0), θ′(0),
γ′(0) and γ(0) must be specified to start the integration. But we have only the
conditions at the plate (η = 0): φ′(0) = 0, φ(0) = 0, θ(0) = 1 and γ(0) = 1. We
notice that the values φ′′(0), θ′(0) and γ′(0) are unknowns at the plate (η = 0), and
we have the conditions at infinity (η∞): φ′(η∞) = 0, θ(η∞) = 0 and γ(η∞) = 0.
Nachtsheim-Swigert method has been used to solve this problem. The procedure
is to estimate the unknown values of φ′′(0), θ′(0) and γ′(0) by iterations satisfying
the conditions:

φ′′(η∞) = δ1 , φ′(η∞) = δ2 , θ′(η∞) = δ3 ,

θ(η∞) = δ4 , γ′(η∞) = δ5 , γ(η∞) = δ6 ,
(25)
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where δi (i = 1, 2, . . . , 6) are very small quantities (errors) of order 10−5 (say).
Equations (25) depend on the unknown surface conditions φ′′(0), θ′(0) and γ′(0).
In order to obtain correction equations for the values φ′′(0), θ′(0) and γ′(0) it is
required to perform the first order Taylor’s series expansion. In the Nachtsheim-
Swigert (1965) iteration scheme the success estimate of φ′′(0), θ′(0) and γ′(0) are
obtained in such a way that the sum of the squares of the errors δ2

1 + δ2
2 + δ2

3 + δ2
4 +

δ2
5 + δ2

6 is minimal with respect to variations in ∆φ′′(0), ∆θ′(0) and ∆γ′(0). Let

E = δ2
1 + δ2

2 + δ2
3 + δ2

4 + δ2
5 + δ2

6 , (26)

then by using the relations

∂E

∂ [∆φ′′(0)]
= 0 ,

∂E

∂ [∆θ′(0)]
= 0 ,

∂E

∂ [∆γ′(0)]
= 0 , (27)

we can obtain three algebraic equations for the three unknowns ∆φ′′(0), ∆θ′(0) and
∆γ′(0). Hence, an improved iteration can be obtained for the initial guessed values
of φ′′(0), θ′(0) and γ′(0), by adding the corresponding values ∆φ′′(0), ∆θ′(0) and
∆γ′(0). This process can be repeated several times until the accuracy is obtained. In
order to verify the accuracy of our present method, we have compared our results
with those of Elbashbishy and Ibrahim (1993). For special case that there is no
variation of concentration and the viscosity is constant, α = β2 = 0, β1 = 0.12 and
Pr = 4, our results are φ′′(0) = 0.51163 and −θ′(0) = 0.83848 but their results
were φ′′(0) = 0.5115 and −θ′(0) = 0.8384. So our results are in good agreement
with them.

5. The governing parameters

We have six important parameters depending on the nature of the fluid, which
are α, β1, β2, N , Pr and Sc. For positive values of α the viscosity of the fluid
decreases with an increase in the temperature. This is the case for fluids such
as water and lubrication oils, while for negative values of α, the viscosity, of the
fluid increases with an increase of the temperature and this is the case for air. β1

is a parameter appearing in equation (10). The positive values of β1, mean that
the thermal diffusivity increases with an increase in temperature and this is the
case for fluid such as water or air. Similarly, β2 is the constant rate of change
of the chemical diffusivity with temperature which is induced in D

D∞

= 1 + β2θ.
The behavior of β2 is similar to the behavior of β1. The constant N (the buoyancy
ratio) which measures the amplitude and the direction of concentration and thermal
forces (buoyancy forces). When N = 0 and N = ∞ we recover the case where a
single scalar is diffusing. When N < 0 buoyancy forces derive the flow in opposite
direction. When N > 0, buoyancy forces are cooperating and derive the flow in the
same direction.

The Prandtl number Pr = ν∞

K∞

, is the ratio between the kinematic viscosity
and the thermal diffusivity. We consider Pr as a constant in the air and take it
in our calculation as (Pr = 0.733). The last constant is Schmidt number Sc = ν

D
,

it is the ratio between the kinematic viscosity and the mass diffusivity. From the
discussions the range of variations of the parameters of the flow can be taken as
follows: (Schlichting (1968); Gebhart (1971); Pop, et al. (1992) and Elbashbeshy
and Ibrahim (1993))
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(i) for air:
−0.7 ≤ α ≤ 0 , 0 ≤ β1 ≤ 6 , 0 ≤ β2 ≤ 4 ,

−1 ≤ N ≤ 3 , P r = 0.73 , Sc = 1.2 .

(ii) For water:

0 ≤ α ≤ 0.6 , 0 ≤ β1 ≤ 0.12 , 0 ≤ β2 ≤ 0.1 ,

−1 ≤ N ≤ 3 , 2 ≤ Pr ≤ 6 , 3 ≤ Sc ≤ 10 .

6. Results and discussions

It is clear from Figures 2 and 3 that the velocity of the fluid at any vertical plane
increases as the parameter α increases (decreasing of the viscosity of the fluid) in
interval 0 < η < η0 ≃ 1.2 but we get an opposite behavior after this interval for both
air and water respectively. These results are expected for water and air because
as α increases, the fluid particles will be under two opposite forces; the first force
increases the velocity due to the decreasing in the viscosity, and the second force
decreases the velocity due to the decreasing of the temperature and concentration.
Near the plate where 0 ≤ η ≤ η0 , θ and C are high, so the first force will be
dominant and the velocity φ′ creases as α increases. On the other hand a far from
the plate η ≥ η0, where θ and C are low, the second force will be dominant and the
velocity φ′ decreases as α increases.

It is observed from Figure 4 the effect of α on the temperature. The temperature
decreases as the parameter α increases. It is noticed from Figure 5 that as the
constant β1 increases (the thermal diffusivity increases), the velocity of the particles
increases. Also from Figure 6, we observe that as β1 increases, the temperature
increases and the same effect of β1 on the concentration but the effect is wake
Figure 7. These effects of β1 occur only for air because for water β1 has very small
effect.

From Figure 8, it is clear that the dimensionless velocity φ′(η) increases as the
constant term of concentration β2 increases in 0 ≤ η ≤ η0

∼= 2.1, but an opposite
effect is noticed at a certain distance far from the plate η ≈ 2.1. Figure 9 represents
that as β1 increases, the temperature θ decreases. We can notice from Figure 10
that as the constant β2 increases, the concentration increases.

Figures 11–13 represent the effects of the buoyancy ratio N on the velocity of
the particles, the temperature and the concentration for air respectively. It is clear
from Figure 11 that as N increases (N > 0), the velocity of the particles φ′(η)
also increases. This is because thermal and solute forces drive the flow in the same
direction. When N < 0, these forces drive the flow in opposite direction and the
flow field can reverse. So an opposite effect for N is observed at a certain distance
from the plate (η ≥).

From Figures 12 and 13, it is clear that as N increases, the temperature and
the concentration increase respectively. Figure 14 represents the effects of N on
the velocity φ′(η) but for liquids (water). The effects of N on water is similar
as its effects on air. From Figures 15 and 16, it is noticed the effects of Prandtl
number Pr on the velocity and the temperature, respectively. The velocity and the
temperature of the fluid decrease as Pr increases. Figures 17 and 18 describe the
effect of Schmdit number Sc on the velocity and the concentration, for water and
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air, respectively. It is clear from Figure 17 that the velocity at any vertical plane
near the plate decreases as Schmidt number Sc increases. But an opposite effect
is noticed at a certain distance from the plate, η0 = 1.9. In Figure 18 a fluid with
a higher Sc value has a lower species diffusion coefficient. This reduces the mass
diffusion rate and hence reduces the concentration driven buoyancy.

In the present work if K and D are taken constants (they do not depend on
the temperature), our results agree very well with those of Mongruel, Cloiture and
Alladin (1996). Also if the motion of the fluid is steady, we will obtain the same
results and the same figures as Angirasa and Srinivasan (1989), Angirasa (1989).
And if there is no concentration (C = 0), i.e., (N = 0), our results agree those of
Elbashbeshy and Ibrahim (1993).

Figure 2 The variation of the dimensionless velocity φ′ with α for Pr = 0.73, Sc = 1.4, N = 3,
β1 = 4.0, β2 = 3.0, α = −0.1,−0.2,−0.3, 0.4

Figure 3 The variation of the dimensionless velocity φ′ with α for Pr = 4, Sc = 10, N = 3,
β1 = 0.12, β2 = 0.1, α = 0, 0.1, 0.2, 0.6
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Figure 4 The variation of the dimensionless temperature θ with α for Pr = 4, Sc = 10, N = 3,
β2 = 0.12, β2 = 0.1, α = 0, 0.6

Figure 5 The variation of the dimensionless velocity φ′ with β1 for Pr = 0.73, Sc = 1.4, N = 3,
β2 = 3.0, α = −0.4, β1 = 0, 1, 2, 4

Figure 6 The variation of the dimensionless temperature θ with β1 for Pr = 0.73, Sc = 1.4,
N = 3, β2 = 3, α = 0.6, β1 = 0, 1, 2, 4
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Figure 7 The variation of the dimensionless concentration γ with β1 for Pr = 0.73, Sc = 1.4,
N = 3, β2 = 3.0, α = −0.4, β1 = −0, 1, 2, 4

Figure 8 The variation of the dimensionless velocity φ′ with β2 for Pr = 0.73, Sc = 1.4, N = 3,
β1 = 4.0, α = −0.4, β2 = 0, 1, 2, 3

Figure 9 The variation of the dimensionless temperature θ with β2 for Pr = 0.73, Sc = 1.4,
N = 3, β1 = 4.0, α = −0.4, β2 = 0, 1, 2, 3
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Figure 10 The variation of the dimensionless concentration γ with β2 for Pr = 0.73, Sc = 1.4,
N = 3, β1 = 4.0, α = −0.4, β2 = 0, 1, 2, 3

Figure 11 The variation of the dimensionless velocity φ′ with N for Pr = 0.73, Sc = 1.4, β1 = 4.0,
α = −0.4, β2 = 3.0, N = −0.5, 0, 1, 2, 3

Figure 12 The variation of the dimensionless temperature θ with N for Pr = 0.73, Sc = 1.4,
α = −0.4, β2 = 3.0, N = −0.5, 0, 1, 2, 3
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Figure 13 The variation of the dimensionless concentration γ with N for Pr = 0.73, Sc = 1.4,
β2 = 3.0, N = −0.5, 0, 1, 2, 3

Figure 14 The variation of the dimensionless velocity φ′ with N for Pr = 4, Sc = 10, β2 = 0.1,
α = 0.6, β2 = 0.1, N = −1,−0.5, 0, 1, 2, 3

Figure 15 The variation of the dimensionless velocity φ′ with Pr for N = 3, Sc = 10, β1 = 0.12,
α = 0.6, β2 = 0.1, Pr = 2, 3, 4, 5, 6
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Figure 16 The variation of the dimensionless temperature θ with Pr for N = 3, Sc = 10,
α = −0.4, β1 = 0.12, β2 = 0.1, Pr = 2, 3, 4, 5, 6

Figure 17 The variation of the dimensionless velocity φ′ with Sc for N = 3, Pr = 4, β1 = 0.12,
α = 0.6, β2 = 0.1, Sc = 2, 5, 7, 10

Figure 18 The variation of the dimensionless concentration γ with Sc for N = 3, Pr = 4,
β1 = 0.12, β2 = 0.1, α = 0.6, Sc = 2, 5, 7, 10
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Table 1 The values of φ′′(0), −θ′(0), −γ′(0), δ, δT and δC for different values of parameters of
the flow α, Sc and N with Pr = 7, β1 = 0.12 and β2 = 0.1 in water

Part a
α φ′′(0) −θ′(0) −γ′(0) δ δT δC

0.0 1.3660 0.9768 1.4711 4.8 2.50 1.50
0.2 1.5409 1.1568 1.5022 4.7 2.15 1.49
0.3 1.6547 1.1744 0.5278 4.5 2.10 1.45
0.6 2.0463 1.2291 1.6050 4.4 2.00 1.40

Part b
Sc φ′′(0) −θ′(0) −γ′(0) δ δT δC

8 2.0080 1.2135 1.6831 4.51 2.00 1.20
10 1.9760 1.1882 1.8202 4.81 2.09 1.19
15 1.8420 1.1452 2.0941 4.85 2.19 0.99
20 1.7727 1.1174 2.3109 4.90 2.23 0.89

Part c
N φ′′(0) −θ′(0) −γ′(0) δ δT δC

-1 0.1538 0.6136 0.7737 3.3 5.5 2.0
0 1.7820 0.9181 1.1911 2.5 5.1 1.9
1 1.2500 1.0540 1.3731 2.3 4.8 1.6
2 1.6644 1.1518 1.5032 2.1 4.7 1.5

From Table 1, we can observe the effect of α, Sc and N on the primary physical
quantities. It is observed that (Table 1a) and (Table 1c), when α or N increase,
θ′′(0) increases, −θ′(0) and −γ(0) also increase, Table 1b shows that as Sc increases,
φ′′(0) and −θ′(0) also increases but −γ(0) decreases. From Table 2 explains the
effect of the thermal diffusivity β1, mass diffusivityβ2 and buoyancy force N on δ,
δT and δC . The value of N has the same effect on air as on water. With increase
of β1 value the values of φ′′(0), θ′(0) and δC increase but the value of −θ′(0) (the
rate of heat transfer) decreases. Also as β2 increases the values of φ′′(0), θ′(0) and
δC increase, but the values of −γ′(0), δ and δt decrease.
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Table 2 The values of φ′′(0), −θ′(0), −γ′(0), δ, δT and δC for different values of parameters of
the flow β1, β2 and N with Pr = 0.7, α = −0.4 and Sc = 1.4 in air

Part a
β1 φ′′(0) −θ′(0) −γ′(0) δ δT δC

0 1.5380 0.70377 0.40613 4.41 4.3 3.32
1 1.5922 0.46714 0.43618 4.46 4.5 3.28
2 1.6231 0.37279 0.45572 4.51 4.7 3.41
3 1.6441 0.31841 0.46987 4.62 4.9 3.45

Part b
β2 φ′′(0) −θ′(0) −γ′(0) δ δT δC

0.0 1.4402 0.25316 0.91324 5.1 5.4 2.6
0.5 1.5038 0.26024 0.76382 4.9 5.3 2.7
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