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The convective stability of a horizontal layer of viscoelastic conducting liquid (Walters’
liquid B′) heated from below and rotating about a vertical axis in the presence of a
magnetic field and thermal relaxation has been investigated. Linear stability theory and
normal mode analysis are used to derive an eigenvalue system of eighth order, and an
exact eigenvalue equation for a neutral instability is obtained. Critical Rayleigh numbers
and wave numbers for the onset of instability are presented graphically as functions of
Taylor number for various values of the Chandrasekhar number and the relaxation time
at a Prandtl number Pr = 1.
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1. Introduction

An important stability problem is the thermal convection in a horizontal thin layer of
fluid heated from below. A detailed account of thermal convection in a horizontal
thin layer of Newtonian fluid heated from below, under varying assumptions of
hydrodynamics, has been given by Chandrasekhar [1]; however, very little is known
about the thermal instability in a viscoelastic fluid layer. The problem of the onset
of thermal instability in a horizontal layer of a viscoelastic fluid heated from below
is both of theoretical and practical interest.

To the author’s knowledge, the first work which deals directly with this problem
appears in a brief report by Green [2]. His analysis, which is restricted to the
case when both bounding surfaces are free, was carried out in terms of a two-
time-constant mode due to Oldroyd [3,4]. The same problem was also attacked in
some detail by Vest and Arpaci [5] who employed a one-time-constant model due
to Maxwell fluid [6,7]. This latter work has recently been extended by Takashima
[8,9] to the case when the fluid layer is rotating about a vertical axis at a constant
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rate. All these investigations show that the presence of elasticity in a viscoelastic
fluid destabilized the fluid layer heated from below.

In technological fields there exists an important class of fluids, called non-
Newtonian fluids, are also being studied extensively because of their practical appli-
cations, such as fluid film lubrication, analysis of polymers in chemical engineering
etc. One such fluid is called viscoelastic fluid and Walters [10], and Beard and
Walters [11] deduced the governing equations for the boundary layer flow for a pro-
totype viscoelastic fluid, which they have designated as liquid B′, when this liquid
has a very short memory. The problem of two-dimensional magnetohydro-dynamic
flow and heat transfer through a non-Newtonian viscoelastic incompressible porous
fluid obeying the rheological equations of state due to Walters is studied by El-Dabe
and Sallam [12]. Singh and Singh [13] have studied the magnetohydro-dynamic flow
of viscoelastic fluid past an accelerated plate.

The method of the matrix exponential, proposed by Bohar [14], and applied
by Ezzat [15] and [14], which constitutes the basis of the state space approach of
modern control theory is applied to the non-dimensional equations of a viscoelas-
tic fluid flow of hydromagnetic free convection flows. Ezzat and Abd-Elaal [16]
have been studied the effects of free convection currents with one relaxation time
on the flow of a viscoelastic conduction fluid through a porous medium, which is
bounded by a vertical plane surface. In these works, more general model of mag-
netohydrodynamic free convection flow which also includes the relaxation time of
heat convection and the electric permeability of the electromagnetic field are used.
The inclusion of the relaxation time and electric permeability modify the governing
thermal and electro-magnetic equations, changing them from parabolic to hyper-
bolic type, and there by eliminating the unrealistic result that thermal disturbance
is realized instantaneously everywhere within a fluid.

Ezzat and Othman [17] studied the influence of a transverse a.c. electric field
on the thermal instability of a rotating micropolar fluid layer. Othman and Ezzat
[18] have studied the stability of viscoelastic conducting liquid (Walters’ liquid B′)
heated from below in the presence of a magnetic field. Othman [19] have studied
the problem of the onset of stability in a horizontal layer of viscoelastic dielectric
liquid (Walters’ liquid B′) under the simultaneous action of a vertical ac electric
field and a vertical temperature gradient.

In Section 2 the basic equations after perturbation and boundary conditions
are written for viscoelastic conducting liquid B′. The solution of the problem was
presented in Section 3. In Section 4 the influence of the magnetic field on the
overstability of a rotating fluid layer heated from below with one relaxation time has
studied and illustrated graphically. In order to simplify the mathematics somewhat,
artificial boundary conditions are adopted.

2. Formulation of the problem

Consider an infinite horizontal layer of an electrically conducting, viscoelastic fluid
layer (Walters’ liquid B′), occupying the space between two horizontal rigid bound-
aries, which are at distance L apart. We choose the origin on the lower boundary,
let us introduce the Cartesian-coordinate system x, y, z in which z is measured at
right angles to the boundaries. Let the system be rotating (round the z-axis) with
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uniform angular velocity Ω = (0, 0,Ω) and is permeated by a uniform external
magnetic field h = (0, 0,H0) of intensity H0 aligned in the vertical direction. The
lower surface at z = 0 and the upper surface at z = L are maintained at constant
temperatures T0 and T1, respectively, and the fluid in the quiescent state is heated
from below such that β = T0−T1

L
is the adverse temperature gradient.

The basic equations are as follows
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and
∂hi

∂xi

= 0 . (5)

The equation of state is given by

ρ = ρ0 [1 − α(T − T0)] (6)

where ρ is the mass density, ρ0 is the reference density at the lower boundary, α

is the coefficient of volume expansion, vi = (u, v, w) is the velocity of the fluid, P

is the pressure, gi = (0, 0,−g) is the gravitational acceleration, K0 is the elastic
constant of Walters’ liquid B′, kc is the thermal diffusivity, cv is the specific heat
at constant volume, T is the temperature of the liquid, τ is the relaxation time, µ0

is the magnetic permiability and η0 is the magnetic diffusivity.
We first obtained the following steady solutions (denoted by an over bar)

ū = v̄ = w̄ = 0 , (7)

T̄ = T0 − βz , (8)

ρ̄ = ρ0(1 + αβz) , (9)

h̄x = 0 , h̄y = 0 , h̄z = H0 . (10)

Under Boussinesq approximation, the equations governing the disturbances can
be written as (Chandrasekhar [1]):

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0 , (11)
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where ν is the kinematic viscosity. The dependent variables w′, T ′, ζ ′ and h′

represent respectively the z-component of the perturbation in the velocity, the tem-
perature, the vorticity and the z-component of the perturbation in the magnetic

field. There ∇2 and ∇2
1 represent respectively ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , ∂2

∂x2 + ∂2
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is the vorticity.

Now, introducing the nondimensional variables, given by L, L2

kc

, kc

L
, βL, kc

L2 and
kcH0

η
as the units of length, time, velocity, temperature, vorticity and magnetic

field, respectively, we obtain the equations governing the disturbances as:
[
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There, Pr = ν
kc

is the Prandtl number, Pm = ν
η

is the magnetic Prandtl number,

R = αβgL4

νkc

is the Rayleigh number,Q =
µ0H2

0
L2

4πσνη
is the Chandrasekhar number,

σ = µ0ρ0, K∗

0 = K0

ρ0L2 is an elastic parameter, S = 2ΩL2

ν
is the Taylor number, and

kc = k
ρ0cv

.

Following the normal mode analysis we assume that the solutions of Eqs. (16)-
(19) are given by

[w′, ζ ′, T ′h′, ] = [W (z), Y (z),Θ(z),H(z)] exp [ct + i(ax + by)] . (20)

There, λ =
√

a2 + b2 is the horizontal wavenumber and c is the stability param-
eter which is, in general, a complex constant. For solutions having the dependence
of the form (20), Eqs. (16)–(19) yield:

[

P−1
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]

(D2 − λ2)W + Rλ2Θ+

P−1
r K∗

0 c(D2 − λ2)2W − QD(D2 − λ2)H + SDY = 0 , (21)

[

P−1
r c + (P−1

r K∗
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]

Y = SDW , (22)
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[

c(1 + τc) − (D2 − λ2)
]

Θ = (1 + τc)W , (23)
[

PmP−1
r c − (D2 − λ2)

]

H = DW . (24)

Since PmP−1
r is exceedingly small under most terrestrial conditions, the first

term on the left-hand side of Eq.(24) may be ignored. Consequently, we can elimi-
nate H from Eqs. (21) and (24) without any differentiation; thus,

[

P−1
r c − (D2 − λ2)

]

(D2 − λ2)W + Rλ2Θ+

P−1
r K∗

0 c(D2 − λ2)2W + QD2W + SDY = 0 . (25)

This means that under the above application the solution for the underlying
problem can be carried out independently of the boundary conditions on the mag-
netic field.

In seeking solutions of these equations we must impose certain boundary con-
ditions at the lower surface z = 0 and the upper surface z = 1. In this paper
we shall restrict ourselves to the case when both boundary surfaces are stress-free,
non-deformable and isothermal.

The boundary conditions for W , Y and Θ are given by

W = D2W = DY = Θ = 0 at z = 0, 1 . (26)

This case, although admittedly an artificial one to consider, is of importance
since its exact solution is readily obtained. Furthermore, from pas experience with
problems of this kind (see, for example, Chandrasekhar [1] and Takashima [20]),
one may feel fairly confident that the general features of the physical situation will
be disclosed by discussion of this case equally as well as by a discussion of solutions
satisfying less artificial boundary conditions.

Equations (22), (23) and (25) subject to the boundary conditions (26) constitute
an eigenvalue system of eighth order.

3. Solution

The eigenvalue system defined by Eqs. (22), (23) and (25) can readily be combined
to yield
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{
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}
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together with

W = D(2m)W = 0 at z = 0, 1, (m = 1, 2, 3, . . .) . (28)

Examination of Eq. (28) and (28) indicates that the relevant solution for W

(characterizing the lowest mode) (see, for example, Takashima [20], Rama Rao [21],
Sharma and Kumar [21] and Othman and Ezzat [18]) is given by

W = W0 sinπz , (29)
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where W0 is a constant. Substitution of this solution for W in Eq. (28) leads to
required eigenvalue equation

{[
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where it must be remembered that c can be complex. Letting

B = π2 + λ2 , (31)

we can rewrite Eq. (30) in the form
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4. Overstability motions and conclusions

Let us now separate the right-hand side of Eq. (32) into the real and imaginary
parts after setting c = iω with ω being real. Then, we have

R = X + iωY . (33)

There, X and Y are real-value functions of Pr, Q, K∗

0 , τ0, λ, S and ω, and the
explicit expressions for these functions are as follows:
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It is apparent from Eq. (36) that for arbitrarily assigned values of Pr, Q, λ, K∗

0 , τ ,
S and ω, R will be complex, but the physical meaning of R requires it to be real.
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Consequently, from the condition that R must be real we have either

R = X and ω = 0 , (36)

or
R = X and Y = 0 . (37)

From Eq. (36) we obtain the eigenvalue equation for a neutral stationary instability,

R =
1

λ2

[

π2BQ + B3 + π2PrS
2
]

. (38)

For a Newtonian viscous fluid, when the magnetic field is absent i.e. Q = 0 and
without rotation i.e. S = 0, Eq. (34) reduces to

R =
B3

λ2
, (39)

which agrees with the classical result (Chandrasekhar [1]). Equation (38) will give
the critical Rayleigh number Rc for the onset of stationary instability.

On the other hand, Eq. (37) leads, after some rearrangements, to
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A3 = B2π2Q2P 3
r (1 − Bτ) + B4P 2

r [Pr (1 − Bτ) + (1 − BK∗

0 )] +

π2P 2
r S2 (BPrτ + 1 − BK∗

0 ) . (46)

For assigned values of Pr, τ , K∗

0 , Q, and S, Eqs. (36) and (37) define R as
a function of B; the minimum of this function determines the critical Rayleigh
number Rc for the onset of oscillatory instability. The critical Rayleigh number
for the onset of oscillatory instability (i.e., overstability) should be compared with
that for the onset of stationary instability (i.e., ordinary convection). The type of
instability, which takes place in practice, will be that corresponds to the lower value
of the critical Rayleigh number.
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Figure 1 The variation of R for the onset of stability as a function of λ for various values of τ at:
Pr = 1, K∗

0
= 0.1, Q = 0 and S = 0. A broken line represents the onset of stationary convection
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Figure 2 The variation of R for the onset of stability as a function of λ for various values of τ

at: Pr = 1, K∗

0
= 0.1, Q = 0 and S = 1000. A broken line represents the onset of stationary

convection

In order to evaluate the conditions under which instability sets in a overstability
Pr, Q, τ , K∗

0 , S and B were first assigned fixed values. Then, the positive root
of the cubic Eq. (41) was sought numerically and substituted in Eq. (40). When
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Figure 3 The variation of R for the onset of stability as a function of λ for various values of τ at:
Pr = 1, K∗

0
= 0.1, Q = 500 and S = 0. A broken line represents the onset of stationary convection

more than one such root was found, the one yielding the lowest value of R was, of
course, taken. When no such root was found, the neutral state was considered to
be stationary. This procedure was then repeated for several values of B in order to
locate the minimum of R.
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Figure 4 The variation of R for the onset of stability as a function of λ for various values of τ

at: Pr = 1, K∗

0
= 0.1, Q = 500 and S = 1000. A broken line represents the onset of stationary

convection

We have plotted the variation of the Rayleigh number R with the wave number
λ using Eq. (40) satisfying Eq. (41) in the stationary and the overstable case for
values of the dimensionless parameters Pr = 1, K∗

0 = 0.1, τ = 0.02, 0.08, and
S = 0, 1000. Figures 1–4 correspond to two values Q = 0 and Q = 500, respectively,
of the magnetic field. Figures 1-4 show that the Rayleigh number R increases with
an increase in the magnetic field and the Taylor number S and decreases as the
relaxation time τ increase i.e. the onset of instability is delayed as Q and S increase
while it is hastened as τ increases.

The critical Rayleigh number Rc and the critical wave number λc obtained in
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Figure 5 The variation of Rc for the onset of stability as a function of S for various values of τ

and Q at: Pr = 1, K∗

0
= 0.1. A broken line represents the onset of stationary convection
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Figure 6 The variation of λc for the onset of stability as a function of S for various values of τ

and Q at: Pr = 1, K∗

0
= 0.1. A broken line represents the onset of stationary convection

that manner for both stationary instability and overstability are shown in Figs. 5 and
6, respectively, as a function of S for values of the dimensionless parameters Pr = 1,
K∗

0 = 0.1 and τ = 0.02, 0.08 for various assigned values of Q. It is seen from Fig. 5
that the critical Rayleigh number Rc decrease as the relaxation time τ increases and
increase as the rotation and the magnetic field increase. From Fig. 6 we see that
the critical wave number λc increases as the relaxation time, the magnetic field and
the rotation increase. The critical Rayleigh number obtained by Chandrasekhar [1]
for the onset of stationary convection is also superimposed in Figs. 1–6 by broken
line. We can directly read from Figs. 1–6 the type of instability, which takes place in
practice, for the various values of parameters for which the calculations have been
made.

From the above findings we conclude that the destabilizing effect of the relax-
ation time and the rotating are controlled by the presence of the magnetic field.
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