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Radiation and thermal diffusion effects of magnetohydrodynamic flow for non Newtonian
fluid through a porous medium past an infinite porous flat plate arc presented. The
flow under consideration obeys Maxwell rheological model. Solutions for velocity, tem-
perature and concentration distributions arc obtained with the help of finite difference
method. The effects of various parameters such as relaxation parameter λ of the Maxwell
fluid, permeability of the fluid K, magnetic parameter M , Dufour number Df , Soret
number Sr, Prandtl number Pr, radiation parameter N and Schmidt number Sc on the
velocity, temperature and concentration profiles are studied and illustrated graphically.
We obtained also the rate of heat transfer and concentration gradient during the course
of discussion.
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1. Introduction

The analysis of heat and mass transfer plays an important role in ice formation
and damage of an organ, preserve cells and tissues through freezing also studying
non-Newtonian fluids in porous medium has many applications in industries such
as ground-water hydrology, petroleum reservoir, nuclear waste disposal, geothermal
energy production, transpiration cooling, design of solid matrix heat exchange and
packed-bed chemical catalytic reactors.

There are many authors who interested in studying this field. Smith et al. [1] in-
vestigated the problem of mass transfer during freezing in rat prostate tumor tissue.
Mass transfer effects on the non-Newtonian fluids past a vertical plate embedded in
a porous medium with non-uniform surface heat flux is carried out by El-Hakiem et
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al. [2]. El-dabe et al. [3] investigated the problem of MHD flow of viscoelastic fluid
through a porous medium on an inclined porous plane in the presence of surface
stress. Lal et al. [4] discussed the problem of magnetohydrodynamics unsteady flow
of Maxwell fluid past a flat plate. Verma [5] investigated the flow of viscoelastic
Maxwell fluid between torsionally oscillatory discs. Two-dimensional steady suction
now of the upper-convected Maxwell fluid in a porous channel has been studied by
Choi ct al. [6]. Michael [7] studied the initial-value problems with inflow bound-
aries for Maxwell fluids. Rainieri et al. [8] discussed the problem of convective heat
transfer to temperature dependent property fluids in the entry region of corrugated
tubes. The problem of forced convection in channels partially filled with porous
substrates is studied by Alkam et al. [9]. Numerical study of simultaneous natural
convection heat transfer from both surfaces of a uniformly heated thin plate with
arbitrary inclination is investigated by Wei et al. [10]. Takhar et al. [11] investi-
gated the radiation effects on MHD free convection flow of a gas past semi-infinite
vertical plate. The problem of natural convection from an inclined plate embedded
in a variable porosity porous medium due to solar radiation is studied by Chamkha
[12].

The main aim of our paper is to study the effect of radiation and thermal
diffusion on MHD Maxwell fluid flow past a vertical porous flat plate through porous
medium in the presence of magnetic field in order to investigate the relation between
velocity, temperature, concentration of the fluid and different parameters of the
problem as Dufour number Dr, Soret number Sr, Prandtl number Pr, Schmidt
number Sc, radiation parameter N and time relaxation parameter λ where this
problem plays an important role in biomedical process.

2. Basic equations

The basic equations of MHD motion neglecting displacement current and free
charges are Maxwell’s equations

∂Hi

∂xi

= 0 , (1)

Ji = ǫijk

∂Hk

∂xj

, (2)

∂Hi

∂t
= −µeǫijk

∂Ek

∂xj

, (3)

Ohm’s equation

Ji = σ(Ei + µeǫijkνjHk) . (4)

The momentum equations

ρ
Dνi

Dt
=

∂Sij

∂xj

+ µeǫijkJjHk . (5)

The continuity equation
Dρ

Dt
= ρeii = 0 . (6)
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The energy equation

ρc

[

∂T

∂t
+ νj

∂T

∂xj

]

= k
∂2T

∂xi∂xi

−
∂q

∂xj

+ DkT

∂2C

∂xi∂xi

. (7)

The concentration equation

∂C

∂t
+ νj

∂C

∂xj

= D
∂2C

∂xi∂xi

+
DkT

Tm

∂2C

∂xi∂xi

. (8)

The stress tensor for a linear, isotropic, Maxwell fluid is given by

Sij = −pδij + τij . (9)

τij is a tensor usually related to the strain tensor in the constitutive equations of
Maxwell fluid as [5]

(

1 + λ
∂

∂t

)

τij = 2µeij , (10)

where

eij =
1

2
(νi,j + νj,i) . (11)

3. Mathematical Analysis

We consider the unsteady flow between two infinite parallel planes of Maxwell fluid
through porous medium in the presence of radiation effect, thermal diffusion and
diffusion thermo-effects. The x-axis is taken along the wall and y-axis perpendicular
to it. A uniform magnetic field H0 is assumed to be applied in y direction, since the
plate is infinite in extent, all quantities are functions of the space coordinate y and
time t [3], ν̄ = (u, v, 0), the momentum, energy, Maxwell fluid and concentration
equations can be written as

∂v

∂y
= 0 , (12)

ρ

[

∂u

∂t
+

∂u

∂y

]

=
∂τxy

∂y
−

(

σµ2
eH

2
0 +

µ

K∗

)

u + ρgβ (T ∗
− T∞) + ρgβc (C∗

− C∞) ,

(13)
(

1 + λ
∂

∂t

)

τxy = µ
∂u

∂y
, (14)

∂T

∂t
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
−

∂q

∂y
+

D

cp

kT

cs

∂2C

∂y2
, (15)

∂C

∂t
+ v

∂C

∂y
= D

∂2C

∂y2
+

DkT

Tm

∂2T

∂y2
, (16)

the term σµ2
eH

2
0 represents the effect of magnetic field, the terms ρgβ(T ∗ − T∞)

ρgβc(C
∗ − C∞) are the forced heat convection and forced mass convection µ

K∗
, is

the porosity of medium, the last two terms in eqs. (15) and (16) refer to the thermal
diffusion and diffusion thermo-effect where these terms play an important role in
most chemical reaction. The radiation effects is represented in the term ∂q

∂y
.
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By using Rosselant approximations [13]

q = −
4σ∗

3k∗
∇T 4 . (17)

where σ∗ is the Stefan-Boltzman and k∗ mean absorption coefficient. We assume
that the temperature differences within the flow are sufficiently small such that T 4

may be expressed as a linear function of temperature. This is accomplished by
expanding T 4 in a Taylor series about T and neglecting higher order terms, thus
we have

T 4 = 4T 3
wT − 3T 4

w . (18)

The boundary conditions for the problem are

u = 0 , T = Tw , C = Cw , at y = 0 , t > 0 ,

u = 0 , T = T∞ , C = C∞ , at y → ∞ , t ≤ 0 ,

}

(19)

where T∞ is the temperature at infinity, C∞ is the mass concentration of species at
infinity, Tw and C∞ are the temperature and mass concentration at the plate.

Let us introduce the following non-dimensional variables as:

y∗ = U
v
y , t∗ = U2

ν
t , u∗ = u

U
, τ∗

xy =
τxy

ρU2 ,

v∗ = v
U

, λ∗ = U2

v
λ , Sc = ν

D
, Pr =

µcp

k
,

T = T∗

−T∞

Tw−T∞

, C∗ = C−C∞

Cw−C∞

, Df = DkT (Cw−C∞)
cpcs(Tw−T∞) ,

G = νgβ(Tw−T∞)
v3

0

, G0 = νgβ(Cw−C∞)
v3

0

, Sr = DkT (Tw−T∞)
Tmν(Cw−C∞) ,























(20)

where U is the mean fluid velocity. Substituting from (20) in equations (12)–(16)
and after dropping star mark, we obtain the following equations

∂v

∂y
= 0 , (21)

∂u

∂t
+ v

∂u

∂y
=

∂τxy

∂y
−

(

M +
1

K

)

u + GT + G0C , (22)

(

1 + λ
∂

∂t

)

τxy =
∂u

∂y
, (23)

∂T

∂t
+ v

∂T

∂y
=

(

1

Pr

+ N

)

∂2T

∂y2
+ Df

∂2C

∂y2
, (24)

∂C

∂t
+ v

∂C

∂y
=

1

Sc

∂2C

∂y2
+ Sr

∂2T

∂y2
, (25)

where

M =
σH2

0ν

ρU2
, N =

16σ∗T 3
1

3ρcpk∗
and K =

(

U

ν

)2

K∗ .

The initial and boundary conditions subjected to the dimensionless quantities can
be written in the following form:

u = 0 , T = 1 , C = 1 , for y = 0 , and t > 0 ,

u → 0 , T → 0 , C → 0 , for y → ∞ , and t ≤ 0 ,

}

(26)
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4. Numerical technique

To solve the system of equations which describe the radiation and thermal dif-
fusion effects on MHD unsteady Maxwell fluid past a porous flat plate through
porous medium under the boundary and initial conditions (26), a finite difference
scheme of Crank-Nicolson type can be applied on equations (22)–(25). The region
of integration is considered as a rectangle with sides ymax = 18, where ymax cor-
responds to y = ∞ and tmax = 20, the appropriate mesh sides ∆y = 0.01 and
time steps ∆t = 0.004 arc considered for calculations. From eq.(21) it is observed
that v = χ(t), therefore the finite difference equations corresponding to equations
(22)–(25) can be written in the following form:

ui,j+1 = ui,j + ∆t

[

D0τi,j + GTi,j + G0Ci,j −

(

M +
1

K

)

ui,j − χjD0ui,j

]

, (27)

τi,j+1 =

(

1

λ
− ∆t

)

τi,j + ∆tD0ui,j , (28)

Ti,j+1 = Ti,j + ∆t

[

1

Pr

D+D−Ti,j + DfD+D−Ci,j − χjD0Ti,j

]

, (29)

Ci,j+1 = Ci,j + ∆t

[

1

Sc

D+D−Ci,j + SrD+D−Ti,j − ΨjD0Ci,j

]

, (30)

where ui,j = u(i∆y, j∆t), Ti,j = T (i∆y, j∆t), Ci,j = C(i∆y, j∆t), i is an integer,
j is non-negative integer denote the grid functions which approximate the exact
solutions of u(y, t), T (y, t) and C(y, t). D+, D− and D0 are numerical operators
defined in [14].

According to the stability conditions which computed by Von-Neuman technique
we calculated numerical values the velocity, temperature and concentration distribu-
tions for different parameters of our problem. We also obtained the non-dimensional
forms of rate of heat transfer and concentration gradient as following

1. The dimensionless rate of heat transfer can be expressed

Q = −

(

∂T

∂y

)

y=0

(31)

2. The concentration gradient in dimensionless can be written as

S = −

(

∂C

∂y

)

y=0

(32)
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Figure 1 Velocity distribution plotted against y for different time relaxation parameter λ, mag-
netic parameter M , permeability K, radiation parameter N , local mass Grashof number G0 and
Grashof number G, respectively

Figure 2 Velocity distribution plotted against y for different time relaxation parameter λ, mag-
netic parameter M , permeability K, radiation parameter N , local mass Grashof number G0 and
Grashof number G, respectively

Figure 3 Velocity distribution plotted against y for different time relaxation parameter λ, mag-
netic parameter M , permeability K, radiation parameter N , local mass Grashof number G0 and
Grashof number G, respectively
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5. Results and discussion

The radiation and thermal diffusion effects on unsteady MHD flow in porous medium
over an infinite vertical flat plate are studied. The momentum, energy and concen-
tration equations are solved numerically by using finite difference methods. In the
course of our discussion we computed the numerical values of velocity, temperature
and concentration according to stability conditions which obtained by Von-Neuman
technique. In computing the functions of the problem we put

χ(t) = cos(t) .

Figure 4 Velocity distribution plotted against y for different time relaxation parameter λ, mag-
netic parameter M , permeability K, radiation parameter N , local mass Grashof number G0 and
Grashof number G, respectively

Figure 5 Velocity distribution plotted against y for different time relaxation parameter λ, mag-
netic parameter M , permeability K, radiation parameter N , local mass Grashof number G0 and
Grashof number G, respectively

The effect of time relaxation parameter λ on velocity distribution is showed in
Figure 1 where it is clear that the velocity distribution decreases as time relaxation
parameter λ increases. Figure 2 shows the effect of magnetic parameter M on the
velocity distribution. It is observed that the velocity decreases as the magnetic
parameter M increases. Figures 3 and 4 indicate that the velocity increases as
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permeability parameter K and radiation parameter N increase. The effects of local
mass Grashof number G0 and local temperature Grashof number G on the velocity
can be shown from Figures 5 and 6. It is clear that the velocity distribution increases
as both local mass Grashof number G0 and local temperature Grashof number G

increase.

Figure 6 Velocity distribution plotted against y for different time relaxation parameter λ, mag-
netic parameter M , permeability K, radiation parameter N , local mass Grashof number G0 and
Grashof number G, respectively

Figure 7 Concentration distribution plotted against y for different thermal diffusion parameter
Sr, and Schmidt number Sc

Figure 7 indicates that the thermal diffusion parameter Sr, increases as concen-
tration distribution increases while it decreases as Schmidt number Sc increases as
shown in Figure 8. Figure 9 shows that the skin friction coefficient increases as
magnetic parameter increases.
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Figure 8 Concentration distribution plotted against y for different thermal diffusion parameter
Sr, and Schmidt number Sc

Figure 9 Temperature distribution plotted against y for different radiation parameter N and
Prandtl number Pr

The effect of radiation parameter N on the temperature distribution can be
shown from Figure 9. It is clear that temperature distribution decreases as radiation
parameter N increases, while it is observed from Figure 10 that the temperature
distribution increases with the increasing of the Prandtl number Pr. Figures 11 and
12 show that the rate of heat transfer and concentration gradient increase with the
increasing of both radiation parameter N and thermal diffusion parameter Sr.
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Figure 12 Rate of concentration gradient S plotted against time t

Nomenclature

σ electrical conductivity
ρ density
K permeability
Sij stress tensor
p pressure
H0 the strength of magnetic induction applied parallel to y-axis
Q rate of heat transfer
T temperature
Pr Prandtl number
C concentration
SC Schmidt number
cp specific heat
k thermal conductivity of the fluid
µe the magnetic permeability
λ relaxation time
eij strain rate tensor
Ec Eckert number
H̄ magnetic field
Ē electric field
ǫijk third order tensor
G local temperature Grashof number
G0 local mass Grashof number
β coefficient of the thermal expansion
βc coefficient of the thermal expansion with concentration
ν kinematic viscosity
D molecular diffusivity
Df Dufour number
Sr Soret number
kT thermal diffusion ratio
Tm mean fluid temperature
cs concentration susceptibility
N radiation parameter
q radiative heat flux




