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The magnetohydrodynamic axisymmetric stability of a gas jet surrounded by finite liq-
uid pervaded by a magnetic field and endowed with surface tension is studied. The
fundamental equations are solved and the eigenvalue relation is derived and discussed.
The radii ratio of the liquid gas cylinder q has a stability effect. The capillary force is
destabilizing for long wavelengths while it is stabilizing for all the rest as the wavelength
is short. The axial magnetic field in the liquid region is stabilizing while the transverse
magnetic field is destabilizing. Under certain restriction the destabilizing effect could dis-
pressed and stability sets in. Here the capillary stability results are in good agreement
with Kendall’s results (1986).

Keywords: gas jet, magnetic field, destabilization.

1. Introduction

The stability of a full liquid jet in vacuum has been documented capillary and
subject to other effects by Rayleigh (1945) and Chandrasekhar (1981).

The stability of the mirror case of a hollow jet i.e. cylinder of negligible inertia
surrounded by a liquid is indicated by Chandrasekhar (1981) for axisymmetric per-
turbation. In (1986) Kendall performed very interesting experiments for examining
the stability of this model under the capillary force. Moreover he, (1986), attracted
the attention for investigating the stability of such model due to its cruitial appli-
cation in several domains of science. Radwan and Elazab (1987) tried to find out
the effect of viscosity on the capillary force. Soon afterwards a lot of researchers in
the international congresses discussed the oscillation of such model.
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Here we study the magnetohydrodynamic stability of axisymmetric hollow jet
endowed with surface tension and pervaded by magnetic fields.

2. Formulation of the problem

We consider a gas cylinder of radius Ro surrounded by finite liquid radically of
radius qRo with 1 < q < ∞. The inertia of the liquid is predominant over that
of the gas. The gas is acting upon the electromagnetic force due to the pervading
magnetic field

Hg
o =

(

0,
βHor

Ro

, 0

)

. (1)

The liquid is acted by the pressure gradient, capillary and electromagnetic force.
The liquid is pervaded by

Ho = (0, 0,Ho). (2)

Here Ho is the intensity of the magnetic field in the liquid, β is parameter and
(r, φ, z) are the cylindrical coordinates will be used for discussing this problem.

The liquid is considered to be incompressible, non viscous and perfectly con-
ducting.

The magnetohydrodynamic basic equations are the following

ρ(
∂u

∂t
+ (u · ∇)u) = −∇P + µ(∇∧ H) ∧ H (3)

∂ρ

∂t
+ ∇ · (ρu) = 0 (4)

∂H

∂t
= curl(u ∧ H) (5)

∇ · H = 0 (6)

Ps = T (∇ · N) (7)

N = (
1

r1
+

1

r2
) =

∇f

|∇f |
, f(r, φ, z) = 0 (8)

∇ · Hgas = 0 (9)

∇∧ Hgas = 0 (10)

Here ρ, u, and P are the liquid mass density, velocity vector and kinetic pressure;
H the magnetic field intensity, µ the magnetic field permeability coefficient, N the
unit outward normal vector to the gas liquid interface indicated as r does, Ps the
curvature pressure due to the capillary force, T the surface tension coefficient. H

and Hg are the magnetic field intensities in the liquid and gas regions.
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3. Perturbation Analysis

Let the fluids interface be perturbed for small departure from the initial state, the
variables concerning the motion of the fluids could be expanded as

Q(r, φ, z, t) = Qo(r) + ε(t)Q1(r, φ, z), | Q1 |<< Qo (11)

Here Q stands for u, ρ, H, Hg, N , Ps and the radial distance of the gas cylinder, Qo

represents the variables in unperturbed state while Q1 represents small increments
of the variable Q. The radial distance of the gas cylinder based on the linear
perturbation technique, is given by

r = Ro + ε(t)R1 + · · · (12)

with
R1 = exp[ikz + σt] (13)

is the elevation of the surface wave measured from the unperturbed state, where σ

is growth rate.
By inserting the expansion (11) into the basic equations (3)-(10) and equating

the coefficients we obtain two different systems of partial differential equations.
They are unperturbed and perturbed systems of equations.

The unperturbed system of equations is solved with taking into account equa-
tions (1) and (2) and that uo = (0, 0, 0). The liquid kinetic pressure Po is given
by

Po =
−T

Ro

+ P g
o +

µH2
o

2
(β2 − 1) (14)

where P g
o is the gas constant pressure in the initial state. In equation (14) if β = 1,

we must have

P g
o >>

T

Ro

(15)

otherwise the model collapses. Clearly ( T
Ro

) is the contribution of the capillary force

while
µH2

o

2 (β2 − 1) is the term due to the effect of the electromagnetic forces in the
gas and liquid regions.

The perturbed system of partial differential equations is given as

ρ
∂u1

∂t
− µ(H · ∇)H = −∇P1 − µ∇(Ho · H1) (16)

∇ · H1 = 0 (17)

∇ · u1 = 0 (18)

∂H1

∂t
= ∇∧ (u1 ∧ Ho) (19)

∇ · Hgas
1 = 0 (20)

∇∧ H
gas
1 = 0 (21)
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P1s =
T

R2
o

(

R1 +
∂2R1

∂φ2
+ R2

o

∂2R1

∂z2

)

(22)

For a single Fourier term and based on the linear perturbation technique, every
perturbed quantity Q1(r, φ, z; t) could be expressed as

Q1(r, φ, z; t) = Q1(r) exp(ikz + σt) (23)

The linear system of equations (16)-(22) taking into account the time-space depen-
dence (23) has been solved.

Apart from the singular solution, we obtained

H
gas
1 = A∇(Io(kr)R1) (24)

Π1 = (BIo(kr) + CKo(kr))R1 (25)

H1 =
−Ho

ρ(σ2 + Ω2
A)

∇

(

∂Π1

∂z

)

(26)

u1 =
−σ

ρ(σ2 + Ω2
A)

∇Π1 (27)

P1s =
T

R2
o

(1 − x2)R1 (28)

with

ΩA =

(

µH2
ok2

ρ

)

1

2

(29)

ρΠ1 = P1 + µ(Ho · H1) (30)

Here I0(kr) and K0(kr) are the modified Bessel functions of the first and second
kind of the order zero, A, B and C are constants of integration to be determined
and ΩA is the Alfven wave frequency defined in terms of Ho.

4. Dispersion relation

Appropriate boundary conditions across the fluids interfaces at r = Ro and r = qRo

are applied. The constants A, B and C are identified and finally the dispersion
relation is derived in the form

σ2 =
T

ρR3
o

(1 − x2)
x(−I1(y)K1(x) + I1(x)K1(y))

(I0(x)K(y) + I1(y)K0(x))
+

µH2
o

ρR2
o

[

−x2 − β2 x(−I1(y)K1(x) + I1(x)K1(y))

(I0(x)K(y) + I1(y)K0(x))

]

(31)

where

x = kRo (32)

y = qx (33)

are the dimensionless longitudinal wavenumbers.
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5. Stability Discussions

Equation (31) is the magnetohydrodynamics stability criterion of the present model
of a gas cylinder surrounded by bounded liquid under axisymmetric perturbation.
It relates the growth rate σ with the longitudinal wavenumbers x, y, the magnetic
field parameters β, the surface tension coefficient and the other parameters ρ, Ro,
µ and Ho of the problem.

In the limitig case as Ho = 0 and q → ∞, the relation (31) reduces to

σ2 =
T

ρR3
o

(1 − x2)
xK1(x)

K0(x)
(34)

that coincides with the dispersion relation indicated by Chandereskher (1981).
If we suppose that T = 0, the relation (31) yields some of our results (Radwan,

Elazab and Hydia (2002) as we put α = 0 and m = 0).

In order to discuss the stability analysis of the present study, we have to write
down about the behaviour and characteristics of the modified Bessel functions.

Consider the recurrence relation for m ≥ 0 (cf. Abramowitz and Stegun (1970))

2I ′m(x) = Im−1(x) + Im+1(x) (35)

2K ′

m(x) = −Km−1(x) − Km+1(x) (36)

Taking into account Im(x) > 0, Km(x) > 0, one may show that I ′m(x) > 0 and
K ′

m(x) < 0, also I ′0(x) = I1(x) and K ′

0(x) = K1(x) since y = qx, 1 < q < ∞ we
have y > x so

I0(y) > I0(x), I1(y) > I1(x) (37)

K0(x) > K0(y), K1(y) > K1(x) (38)

Therefore, we get
I0(x)K1(y) + I1(y)K0(x) > 0 (39)

I1(x)K1(y) − I1(y)K1(x) < 0 (40)

Consequently, for x 6= 0, we have

x(I1(x)K1(y) − I1(y)K1(x))

(I0(x)K1(y) + I1(y)K0(x))
< 0 (41)

Now, let us returning to our task of investigating the stability of the present
model.

In the absence of the magnetic field Ho = 0, the capillary dispersion relation is
obtained from (31) in the form

σ2 =
T

ρR3
o

(1 − x2)
x(I1(x)K1(y) − I1(y)K1(x))

(I0(x)K1(y) + I1(y)K0(x))
(42)

In view of the inequalities (37)-(41) we see that

σ2

T
ρR3

o

> 0, as 0 < x < 1 (43)
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σ2

T
ρR3

o

< 0, as 1 < x < ∞ (44)

σ2

T
ρR3

o

= 0, as x = 1 (45)

This means that the present model is unstable for long wave lengths 0 < x < 1
and ordinary stable for short wave length 1 < x < ∞ and marginally stable as the
perturbed wave length λ(= 2πRo) equal to the circumference of the gas cylinder.
Note that λ = 2π

k
or λ = 2πRo

x
, as x = 1 we have λ = 2πRo. The magnetodynamic

dispersion relation of the present model, may be obtained from the equation (31),
as T = 0, in the form

σ2 =
µH2

o

ρR2
o

[

−x2 − β2 x(I1(x)K1(y) − I1(y)K1(x))

(Io(x)K1(y) + I1(y)Ko(x))

]

(46)

The axial magnetic field in the liquid region is represented by the term (−x2)

following
µH2

o

ρR2
o

. It is negative for all values of x 6= 0. So it is stabilizing and is

independent of the kind of perturbation. The effect of the magnetic field in the
gas region is represented by the terms including β. This term, by means of the
inequalities (37)-(41) is always positive definite. This means that the transverse
magnetic field pervaded into gas region is strongly destabilizing for all short and long
wavelengths. Therefore as β is infinitesmly small, the model under consideration is
magnetodynamic stable.

Combining the foregoing discussions concerning the capillary instability and
magnetodynamic one, the destabilizing character of this model could be supposed
and then stability sets in.

References

[1] Chandrasekhar, S: Hydrodynamic and Hydromagnetic Stability, Dover Publ., New
York, (1981).

[2] Rayleigh, JW: The Theory of Sound, Dover Publ., New York, (1945).

[3] Kendall, JM, Phys. Fluids, 29, (1986), 2086.

[4] Radwan, AE and Elazab, SS: Simon Stevin, 61, (1987), 293.

[5] Radwan, AE, Elazab, SS and Hydia, WH: Nouvo Cimento, 117B, (2002), 257.


