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The propagation of electromagneto-thermo-elastic disturbances produced by thermal
shock based on Lord-Shulman (L-S), Green-Lindsay (G-L) and classical dynamical cou-
pled (CD) theories in a perfectly conducting half-space are studied. There acts an initial
magnetic field parallel to the plane boundary of the half-space. The normal mode analy-
sis is used to obtain the exact expressions for the considered variables. The distributions
of the considered variables are represented graphically for each case. A comparison is
made with the results predicted by the coupled theory. It is found that the magnetic
field has decreasing effect.
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1. Introduction

In the last few decades a new domain has been developed, which investigates the
interactions between the strain and electromagnetic fields. This discipline is called
magneto-elasticity. A stimulus for its development was the possibility of its appli-
cations to geophysical problems, certain topics in optics, acoustics, investigations
on damping of acoustic waves in a magnetic field, etc.

Shadwick and Sneddon [1] have shown how the form of plane waves traveling
in infinite elastic solid is affected by its thermal properties. Biot [2] formulated
the theory of coupled thermoelasticity to eliminate the paradox inherent in the
classical uncoupled theory that elastic changes have no effect on the temperature.
The heat equation for both theories is of the diffusion type predicting infinite speeds
of propagation for heat waves contrary to physical observations. Lord and Shulman
[3] introduced the theory of generalized thermo-elasticity with one relaxation time
by postulating a new law of heat conduction to replace the classical Fourier’s law.
This law contains the heat flux vector as well as its time’s derivative. It contains
also a new constant that acts as a relaxation time. The heat equation of this
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theory is of the wave-type, ensuring finite speeds of propagation for heat and elastic
wave. The remaining governing equations for this theory, namely, the equations
of motion and the constitutive relation remain the same as those for the coupled
and uncoupled theories. Dhaliwal and Sherief [4] extended this theory to general
anisotropic media in the presence of heat sources. Because of the complicated nature
of these equations, few attempts have been made to solve them. Sherief [5] solved a
spherically symmetric problem with a point source of heat, and Sherief and Anwar
[6] solved a cylindrically symmetric problem with a line source of heat.

Müller [7] first introduced the theory of generalized thermoelasticity with two
relaxation times. A more explicit version was then introduced by Green and Laws
[8], Green and Lindsay [9] and independently by Suhubi [10]. In this theory, the
temperature rates are considered among the constitutive variables. This theory
also predicts finite speeds of propagation as in Lord and Shulman’s theory. It
differs from the latter in that Fourier’s law of heat conduction is not violated if the
body under consideration has a center of symmetry. Erbay and uhubi [11] studied
wave propagation in cylinder. Ignaczak [12] studied a strong discontinuity wave and
obtained a decomposition theorem [13].

Many authors have considered the propagation of electromagneto-thermoelas-
tic waves in an electrically and thermally conducting solid. Ezzat and Othman
established the model of the two-dimensional equations of generalized magneto-
thermoelasticity with two relaxation times in a perfectly conducting medium. Paria
[15] discussed the propagation of plane magneto-thermoelastic waves in anisotropic
unbounded medium under the influence of a uniform thermal field and with a mag-
netic field acting transversely to the direction of the propagation. Paria used the
classical Fourier law of heat conduction and neglected the electric displacement.
A comprehensive review of the earlier contributions to the subject can be found
in [16]. Among the authors who considered the generalized magneto-thermoelastic
equations are Nayfeh and Nasser [17], who studied the propagation of plane waves
in a solid under the influence of an electromagnetic field. They obtained the gov-
erning equations in the general case and the solution for some particular cases.
Choudhuri [18] extended these results to rotating media. Lately, Othman [19] con-
structs the model of generalized thermo-elasticity in an isotropic elastic medium
under the dependence of the modulus of elasticity on the reference temperature
with one relaxation time. Tomita and Shindow [20] have studied Rayleigh waves in
magneto-thermoelastic solids with thermal relaxation.

In the present paper, a comparison is carried out between temperature dis-
tribution, displacement components and thermal stresses as calculated from the
generalized thermoelasticity L-S and G-L theories for the problem under consider-
ation. It appears; in particular, that the results obtained from G-L theory tends
to those of L-S theory as the values of the two relaxation times become closer to
each other. The classical dynamic coupled (CD) theory is recovered as a special
case. The second relaxation time is well pronounced when it becomes larger than
the first one. The results obtained in this study put in evidence the effects of the
thermal relaxation times involved in the theories and the effect of magnetic field on
the displacement and stress.
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2. Formulation of the problem and basic equations

We consider the problem of a thermoelastic half-space (x ≥ 0). A magnetic field
with constant intensity H acts parallel to the boundary plane (taken as the direction
of the z-axis). The surface of the half-space is subjected at time (t = 0) to a
thermal shock that is a function of y and t. Thus all the quantities considered
will be functions of the time variable t and of the coordinates x and y. We begin
our consideration with linearized equations of electrodynamics of slowly moving
medium

J = curlh − ε0Ė , (1)

curlE = −µ0ḣ , (2)

E = −µ0(u̇ ∧ H) , (3)

∇ · h = 0 . (4)

The above equations are supplemented by the displacement equations of the
theory of elasticity, taking into account the Lorentz force

ρüi = σij,j + µ0 (J ∧ H)i , (5)

The equation of heat conduction

kT,ii = ρCE(Ṫ + τ T̈ ) + γT0(u̇i,i + τδüi,i) , (6)

Stress-strain-temperature constitutive relations

σij = λekkδij + 2µeij − γ
(

T − T0 + νṪ
)

δij , (7)

Strain-displacement constitutive relations

exx =
∂u

∂x
, eyy =

∂v

∂y
, exy =

1

2

(

∂u

∂y
+

∂v

∂x

)

, exz = eyz = ezz = 0 , (8)

together with the previous equations, constitute a complete system of generalized
magneto-thermoelasticity with thermal relaxation times equations for a medium
with a perfect electric conductivity.

In the above equations a dot denotes differentiation with respect to time, and
a comma followed by a subscript denotes partial differentiation with respect to the
corresponding coordinates. The summation notation is used. We shall consider
only the simplest case of the two-dimensional problem. We assume that all causes
producing the wave propagation are independent of the variable z, and that waves
are propagated only in the xy-plane. Thus all quantities appearing in equations (1)–
(8) are independent of the variable z. Then the displacement vector has components
(u(x, y, t), v(x, y, t), 0).

Assume now that the initial conditions are homogeneous and the initial magnetic
field has components(0, 0,H0). Then equations (1)–(4) yield

E = µ0H0(−v̇, u̇, 0) , (9)

h = −H0(0, 0, e) . (10)

Moreover the use of the relaxation times τ , ν and a parameter δ marks the afore-
mentioned fundamental equations possible for the tree different theories:
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1. Classical Dynamical theory (1956): τ = ν = 0, δ = 0.

2. Lord and Shulman’s theory (1967): ν = 0, τ > 0, δ = 1.

3. Green and Lindsay’s theory (1972): ν ≤ τ > 0, δ = 0.

Eliminating σij from Eq. (5) and (7) and using Eq. (8), one may get

ρüi = (λ + µ)uk,ki + µ∇2ui − γ
(

T + νṪ
)

,i
+ µ0(J ∧ H)i . (11)

Expressing the components of the vector J in terms of displacement, by elim-
inating from equation (1) the quantities h and E and introducing them into the
displacement equations (11), we arrived at:

β2
0u,xx + (β2

0 − 1)v,xy + u,yy − β2(θ,x + νθ,xt) = αu,tt , (12)

β2
0v,yy + (β2

0 − 1)u,xy + v,xx − β2(θ,y + νθ,yt) = αv,tt , (13)

where e is the cubical dilatation, it can be expressed as the following form

e =
∂u

∂x
+

∂v

∂y
, (14)

the heat conduction equation

∇2θ =

(

∂

∂t
+ τ

∂2

∂t2

)

θ + ε

(

∂

∂t
+ τδ

∂2

∂t2

)

e , (15)

and the components of the stress are

σxx = (β2 − 2)e + 2u,x − β2

(

1 + ν
∂

∂t

)

θ , (16)

σyy = (β2 − 2)e + 2v,y − β2

(

1 + ν
∂

∂t

)

θ , (17)

σxy = u,y + v,x . (18)

Differentiating Eq. (12) with respect to x, and Eq. (13) with respect to y, then
adding we obtain

(

∇2 − α1
∂2

∂t2

)

e − β2
1

(

1 + ν
∂

∂t

)

∇2θ = 0 , (19)

In the equations above the following non-dimensional variables are used: x = c1ηx′,
y = c1ηy′, u = c1ηu′, v = c1ηv′, t = c2

1ηt′, τ = c2
1ητ ′, ν = c2

1ην′,

θ =
γ (T ′ − T0)

λ + 2µ
, σij =

σ′

ij

µ
, β2

1 =
c2
1

c2
0

, α1 =
α

β2
0

.
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3. Normal Mode Analysis

The solution of the considered physical variable can be decomposed in terms of
normal modes as following form

[u, v, e, θ, σij ] (x, y, t) =
[

u∗(x), v∗(x), e∗(x), θ∗(x), σ∗

ij(x)
]

exp(ωt + iay) . (20)

where ω is the (complex) time constant and a is the wave number in the y-direction.
By using Eq. (20), we can obtain the following equations from Eqs. (15) and

(19) respectively

[

D2 − a2 − ω(1 + τω)
]

θ∗(x) = εω(1 + τωδ)e∗(x) , (21)

[

D2 − a2 − α1ω
2
]

e∗(x) = β2
1(1 + νω)(D2 − a2)θ∗(x) . (22)

where, D = d
dx

.
Eliminating θ∗(x) in Eqs. (21) and (22), we get

(D4 − a1D
2 + a2)e

∗(x) = 0 . (23)

where,
a1 = 2a2 + b1 , (24)

a2 = a4 + a2b1 + b2 , (25)

b1 = ω2 + α1ω
2 + εω1β

2
1(1 + τωδ) , (26)

b2 = α1ω
2ω2 , (27)

ω1 = ω(1 + νω) , ω2 = ω(1 + τω) . (28)

Equation (23) can be factorized as

(D2 − k2
1)(D

2 − k2
2)e

∗(x) = 0 . (29)

where,

k2
1,2 =

1

2

[

a1 ±
√

a2
1 − 4a2

]

(30)

is the root of the following characteristic equation

k4 − a1k
2 + a2 = 0 , (31)

The solution of equation (29) has the form

e∗(y) =

2
∑

i=1

e∗i (x) . (32)

where e∗i (x) is the solution of the equation

(D2 − k2
i )e∗i (x) = 0 , i = 1, 2 . (33)

The solution of Eq. (33) which is bounded as x → ∞ is given by

e∗i (x) = Ai(a, ω)e−kix . (34)
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Thus e∗(x) has the form

e∗(x) =
2

∑

i=1

Ai(a, ω)e−kix . (35)

In a similar manner, we get

θ∗(x) =
2

∑

i=1

Bi(a, ω)e−kix , (36)

where Ai(a, ω) and Bi(a, ω) are some parameters depending on a and ω.
Substituting from Eqs. (34) and (35) into Eq. (20), we obtain the following

relation

Bi =
εω(1 + τωδ)

[k2
i − a2 − ω2]

Ai , i = 1, 2 . (37)

Substituting from Eq. (37) into Eq. (36), we get the following relation

θ∗(x) =

2
∑

i=1

εω(1 + τωδ)

[k2
i − a2 − ω2]

Aie
−kix . (38)

In order to obtain the displacement u, in terms of Eq. (20), from Eqs. (12) and (14)

(D2 − a2 − αω2)u∗ + (β2
0 − 1)De∗ − β2(1 + νω)Dθ∗ = 0 . (39)

Using Eqs. (35) and (38) we get the following partial differential equation satisfied
by

(D2 − m2)u∗ =

2
∑

i=1

[

(β2
0 − 1) −

εω1β
2(1 + τωδ)

[k2
i − a2 − ω2]

]

kiAi(a, ω)e−kix , (40)

where,

m =
√

a2 + αω2 . (41)

The solution of Eq. (40) bounded as x → ∞, is given by

u∗(x) = Ce−mx +
2

∑

i=1

[

(β2
0 − 1) −

εω1β
2(1 + τωδ)

[k2
i − a2 − ω2]

]

kiAi(a, ω)

(k2
i − m2)

e−kix . (42)

where C = C(a, ω) is some parameter depending on a and ω.
In terms of Eq. (20), from Eqs. (14) we get

v∗ = −
i

a

(

e∗ −
∂u∗

∂x

)

. (43)

Substituting from Eqs. (35) and (42) into the right-hand side of Eq. (43), we get

v∗(x) =
i

a

{

2
∑

i=1

1

k2
i − m2

(

m2 − k2
i

[

β2
0 −

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

])

Aie
−kix − mCe−mx

}

(44)
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In terms of Eq. (20), substituting from equations (35), (38), (42) and (44) into
Eqs. (16)–(18), we get

σ∗

xx(x) = −2mCe−mx −

2
∑

i=1

{

k2
i

k2
i − m2

[

(β2
0 − 1) −

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

]

−

(β2 − 2) +
εω1β

2(1 + τωδ)

k2
i − a2 − ω2

}

Aie
−kix , (45)

σ∗

yy(x) = 2mCe−mx +

2
∑

i=1

{

β2 +
2k2

i

k2
i − m2

[

(β2
0 − 1) −

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

]

−
εω1β

2(1 + τωδ)

k2
i − a2 − ω2

}

Aie
−kix , (46)

σ∗

xy(x) =
i

a

{

(m2 + a2)Ce−mx +

2
∑

i=1

ki

k2
i − m2

[

(k2
i + a2)

(

β2
0 −

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

)

− (m2 + a2)

]

Aie
−kix

}

. (47)

The normal mode analysis is, in fact, to look for the solution in Fourier transformed
domain. Assuming that all the relations are sufficiently smooth on the real line such
that the normal mode analysis of these functions exists.

In order to determine the parameters Ai, i = 1, 2 and C, we need to consider
the boundary conditions at x = 0. We consider two kinds of boundary conditions
respectively, and the details are described as the following

3.1. Case 1

Thermal boundary condition that the surface of the half-space subjected to a ther-
mal shock

θ(0, y, t) = n(y, t) . (48)

Mechanical boundary condition that the surface of the half-space is traction free

σyy(0, y, t) = 0 , (49)

σxy(0, y, t) = 0 . (50)

Using Eq. (20) and substituting from the expressions of considered variables
into the above boundary conditions, we can obtain the following equations satisfied
by the parameters

2
∑

i=1

εω(1 + τωδ)

k2
i − a2 − ω2

Ai = n∗(a, ω) , (51)

2mC +

2
∑

i=1

{

β2 +
1

k2
i − m2

[

2k2
i (β2

0 − 1) − (3k2
i − m2)

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

]}

Ai = 0 ,

(52)
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(m2+a2)C+

2
∑

i=1

ki

k2
i − m2

{

(k2
i + a2)

(

β2
0 −

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

)

−
(

m2 + a2
)

}

Ai = 0

(53)
Solving Eqs. (48), (49) and (50) we get the parameters Ai, i = 1, 2 and C with the
following form respectively

A1 =
n∗[(a2 + m2)M2 − 2mN2]

(a2 + m2)(M2S1 − M1S2) − 2m(N2S1 − N1S2)
, (54)

A2 =
−n∗[(a2 + m2)M1 − 2mN1]

(a2 + m2)(M2S1 − M1S2) − 2m(N2S1 − N1S2)
, (55)

C =
n∗[M1N2 − M2N1]

(a2 + m2)(M2S1 − M1S2) − 2m(N2S1 − N1S2)
. (56)

where

Si =
εω(1 + τωδ)

k2
i − a2 − ω2

, (57)

Mi = β2 +
1

k2
i − m2

[

2k2
i (β2

0 − 1) − (3k2
i − m2)

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

]

, (58)

Ni =
ki

k2
i − m2

{

(k2
i + a2)

(

β2
0 −

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

)

− (m2 + a2)

}

. (59)

3.2. Case 2

Thermal boundary condition that the surface of the half-space subjected to a ther-
mal shock

θ(0, y, t) = n(y, t) , (60)

Displacement boundary condition that the surface of the half-space is rigidly fixed

u(0, y, t) = 0 , (61)

v(0, y, t) = 0 . (62)

Using Eq. (20) and substituting from the expressions of considered variables into
the boundary conditions (60)–(62), we can obtain the following equations satisfied
by the parameters

2
∑

i=1

εω(1 + τωδ)

k2
i − a2 − ω2

Ai = n∗(a, ω) , (63)

C +
2

∑

i=1

ki

k2
i − m2

[

(β2
0 − 1) −

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

]

Ai = 0 , (64)

2
∑

i=1

1

k2
i − m2

(

m2 − k2
i

[

β2
0 −

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

])

Ai − mC = 0 . (65)
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From Eqs. (62)–(64), we get

A1 =
−n∗[mL2 + G2]

m(L1S2 − L2S1) + G1S2 − G2S1
, (66)

A2 =
n∗[mL1 + G1]

m(L1S2 − L2S1) + G1S2 − G2S1
, (67)

C =
n∗[G2L1 − G1L2]

m(L1S2 − L2S1) + G1S2 − G2S1
. (68)

where

Li =
ki

k2
i − m2)

[

(β2
0 − 1) −

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

]

, (69)

Gi =
1

k2
i − m2

(

m2 − k2
i

[

β2
0 −

εω1β
2(1 + τωδ)

k2
i − a2 − ω2

])

. (70)

4. Numerical results

The thermal shock n(y, t) applied on the surface, is taken of the form

n(y, t) = θ0H(L − |y|) exp(−bt) , (71)

where H is the Heaviside unit step function, b and θ0 are constants. This means
that heat is applied on the surface of the half-space on narrow band of width 2L
surrounding the y- axis to keep it at temperature θ0, while the rest of the surface
is kept at zero temperature.

The copper material was chosen for numerical evaluations. In the calculation
process, the material constants necessary to be known can be found in [21].

Since we have ω = ω0 + iζ, eωt = eω0t(cos ζt + i sin ζt), where i is imaginary
unit, and for small values of time, we can take ω = ω0 (real). The other constants
of the problem are taken as L = 2, ν = 0.02, τ = 0.05, θ0 = 1, ω0 = 2, a = 1.2.

Considering the distributions of displacement component u and stress compo-
nents σxx and σyy for y = 0 at t = 0.1. The computations were carried out in the
absence (α = 1) and in the presence (α = 1.8) of external magnetic field, when the
medium is a perfect electric conductor. Calculated results of the real part of the
non-dimensional displacement and stresses are shown in Figs. 1–6 respectively. The
graph shows the sixth curves predicted by the different theories of thermo-elasticity.
In these figures the solid line represents the solution corresponding to using the cou-
pled (CD) of heat conduction (ν = τ = 0 and δ = 0), the dotted lines represent the
solution for (L-S) theory (ν = 0, τ = 0.05 and δ = 1) and the dashed lines represent
the solution for (G-L) theory (ν = 0.02, τ = 0.05 and δ = 0). Due to symmetries of
geometrical shape and thermal boundary condition, the displacement component v

and the stress component σxy are zero when y = 0.
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In all figures, it is clear that all the distributions considered have a non-zero
value only in a bounded region of space. Outside this region the values vanish
identically and this means that the region has not felt thermal disturbance yet.
From the distribution of displacement component and the stress components, it is
found that the magnetic field has a decreasing effect.

5. Concluding remarks

Owing to the complicated nature of the governing equations for the generalized
electromagneto-thermoelasticity with thermal relaxation few attempts have been
made to solve problems in this field [13-18], these attempts utilized approximate
methods valid for only a specific range of some parameters.

In this work, the method of normal mode analysis is introduced in the field of
magneto-thermo-elasticity and applied to two specific cases in which the tempera-
ture, stress, displacement and magnetic field are coupled. This method gives exact
solutions without any assumed restrictions on either the applied magnetic field or
the temperature and stress distributions.
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Nomenclature

λ, µ Lamé’s constants,
ρ density,
CE specific heat at constant strain,
t time,
T absolute temperature,
T0 reference temperature chosen so that |T − T0| ≪ 1,
σij components of stress tensor,
eij components of strain tensor,
ui components of displacement vector,
k thermal conductivity,
µ0 magnetic permeability,
ε0 electric permeability,

a2
0

µ0H2

0

ρ
, Alfen velocity,

c2
1

λ+2µ
ρ

,

c2
0 c2

1 + a2
0,

c2

√

µ
ρ

velocity of transverse waves,

c
√

1
µ0ε0

the velocity of light,

α 1 +
a2

0

c2 ,

β2 c2

1

c2

2

,

α0 αβ2,

β2
0

c2

0

c2

2

,

τ, ν relaxation times,
αt coefficient of linear thermal expansion,
γ (3λ + 2µ)αt,

ε γ2T0

ρCE(λ+3µ) ,

η ρCE

k
.


