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In the present work the stability criterion for two coupled nonlinear Schrödinger equa-
tions having parametric terms is derived. In this investigation, two different types of
coupled nonlinear Schrödinger equations are discussed. Two coupled parametric non-
linear Schrödinger equations govern the wave behavior at the self-secondary resonance
interaction and other two coupled parametric equations describe the wave-wave interac-
tion at self-cubic resonance case. Stability criterion governing resonance mechanisms is
performed in view of temporal periodic perturbations. Moreover, stability criterion at
the perfect resonance case is achieved. Further, some numerical calculations are made
to screen the stability pictures at the self-second resonance case.
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1. Introduction

There are wide applications and deep researches for the nonlinear Schrödinger equa-
tion. This equation is now so widely used in many branches of physics and dynamics
that it forms a separate class of equations investigated thoroughly by many re-
searches. But the correspondence between the initial full system and the nonlinear
Schrödinger equation is not so clearly stated. It is well known that the nonlinear
Schrödinger equation is a generic equation describing unidirectional wave modu-
lation (see e.g., [1, 2]). It has been shown to describe the spatial and temporal
evolution of the envelope of a sinusoidal wave with phase kx − ω(k) t, which draws
potential energy from some background field [3].

Lee [4] has used the method of multiple scales to analyze the second harmonic
resonance of nonlinear progressive waves on the surface of a fluid column in the
presence of a magnetic field. The dynamic equations governing the second harmonic
resonance have been obtained. The interaction equations, truncated at second order,
have solutions which develop a singularity after a finite time. Also, he points out
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that there exists a special case when a wave and its own second harmonic wave
interact and cause a resonant triad of the form k1 = 2k2 and ω1 = 2ω2. Such cases
have been investigated extensively by McGoldrick [5] and Nayfeh [6] for waves on
a single interface.

Nayfeh et al. [7] investigated the nonlinear waves on the interface of two incom-
pressible inviscid fluids of different densities and arbitrary surface tension using the
method of multiple scales. They obtained a second order expansion for wavenum-
bers near the second harmonic resonant wavenumber, for which the fundamental
wave and its second harmonic have the same phase velocity and found that this
resonance does not lead to instabilities.

Singla et al. [8] studied the weakly nonlinear theory of resonant wave interac-
tions at a charge free surface separating two semi-infinite dielectric streaming fluids
influenced by a tangential electric field.

However, during the last twenty years of active researches of wave-wave inter-
action, rich information on the nature resonance instability has been accumulated.
Coupled nonlinear Schrödinger equations describe co-propagation of two indepen-
dent modes in nonlinear medium [9]. Thus, the aim is to advertise a useful study
in theoretical approach to cover stability criteria, for the following new-coupled
nonlinear Schrödinger equations:
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These equations govern the stability behavior at a self-secondary resonance case,
where i is the imaginary number, t and x are time and space variables respectively
and Γ = σ1x+σ2 t, (σ1and σ2 are two detuning parameters) [10,11]. The unknowns
A(x, t)and B(x, t) are the envelopes of wave packets in two different degrees of
freedom of the underlying physical systems. The parameters R, K, H, G and E are
constant coefficients that depend on the dispersion parameters. The parameters Pj ,
j = 1, 2 are, respectively, two different dispersion coefficients representing the rate of
the group velocities. The nonlinear coefficients Qii are the Landau constants which
describe the self-modulation of the wave packets and Q12 and Q21 are the wave-wave
interaction coefficients which describe the cross-modulations of the wave packets.
They are all real parameters. These equations are derived from using the multiple
scale perturbations [10] to a coupled nonlinear dynamic system [9]. There are many
applications including these equations, for example, nonlinear optics, geophysical
fluid dynamics and plasma physics.

Further, the approach is extended to cover the stability criteria for another two
coupled nonlinear Schrödinger equations that govern the self-cubic-resonance case.
These equations are
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where the parameters Sj , j = 1, 2 are constant coefficients depending on the dis-
persion parameters P1, and P2 while σ refers to the parametric terms which are
assumed to be real.

The absence of the parametric coefficients from the system of equations (1) and
(2) or from the system of (3) and (4) is reduced to
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This system is composed of two coupled nonlinear Schrödinger equations gov-
erning the non-resonance case. However, the above system refers to those discussed
before by Tan and Boyd [12]. They discuss the stabilization of these systems, which
depends on a quadratic algebraic equation without cubic term. Their dispersion
relation contains eleven parameters. This causes more difficulty in discussing sta-
bility behavior. Accordingly, they discussed some special cases. In the present work
we explore the stability criterion for both coupled equations (1), (2) as well as for
coupled equations (3) and (4).

Inoué [13] derived coupled nonlinear Schrödinger equations with the same group
velocities for the interaction of two wave-packets in an isotropic dielectric material.
In transverse waves along a beam on an elastic foundation, Nayfeh [10] studied
third-harmonic resonance waves, which are described by two simultaneous nonlin-
ear Schrödinger equations having two different group velocities. The stability of
localized solitary wave solutions of simultaneous nonlinear Schrödinger equations
describing different types of interacting waves in plasma has been investigated by
Bhakta and Gupta [14]. Recently El-Dib [9] discussed stability of the periodic so-
lutions for two coupled nonlinear Schrödinger equations. He also studied nonlinear
Schrödinger equations with time-depend coefficients. In his investigation stability
criteria at resonance cases are derived.

2. Stability criteria at the self-second-harmonic resonance case

Suppose we have two uniform monochromatic wavetrains solutions

u(x, t) = A exp(iθ1) and v(x, t) = B exp(iθ2) (7)

corresponding to any nonlinear dispersive system having two degrees of freedom
in which θj = kjx − ωjt, ωj , j = 1, 2, two unequal angular frequencies which are
assumed to be real, kj two different wavenumbers which are assumed to be real
and positive and A B are the amplitude of the wavetrains. Nonlinear interactions
force us to distinguish between two cases, the case of θ1 and θ2 are different (the
non-resonance case). The second case is the self-second-harmonic resonance which
arises when θ2 (say) near 2θ1 (say).

We shall now, discuss the stability criteria at the resonance case (self-second-
harmonic resonance). It is convenient to introduce two detuning parameters [15] σ1

and σ2 in order to express the nearness of θ2 to θ1 as

k2 = 2k1 + σ1 and ω2 = 2ω1 + σ2 ,
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and hence

iθ2 = 2iθ1 + iΓ and − i(θ1 − θ2) = iθ1 + iΓ .

The use of the above notation in the nonlinear analysis [9] leads to deriving the
two coupled nonlinear Schrödinger equations (1) and (2) in which they govern the
resonance case. If we introduce the following transformation:
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In view of the temporal solution, suppose that the above equations (9) and (10)
have the following dependence:

α = m exp(i$t) and β = n exp(2i$t) , (11)

where m and n are non-zero real amplitudes, $ is the frequency. Inserting (11) into
(9) and (10) we obtain
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2$2 + L1$ + L0 = 0 , (15)

where

L1 = σ2

1
(2P1 + P2) + (2Q11 + Q12)m

2 + (Q22 + 2Q21)n
2 + 3σ2,

L0 = P1P2σ
4

1
+

{

[P2Q11 + P1Q12 + (E − G)(H − K + R)]m2

+(P2Q21 + P1Q22)n
2
}

σ2

1
+ (Q11m

2 + Q21n
2) (Q12m

2 + Q22n
2) + σ2

2

+
(

σ2

1
(P1 + P2) + (Q11 + Q12)m

2 + (Q22 + Q21)n
2
)

σ2



El-Dib, YO 73

Clearly, the dispersion relation for the unperturbed solution (11) depends on the two
unknowns m and n. It is easy to show that the solution (11) is bounded provided
that the discriminate of the relation (10) is positive, that is

[
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(2P1 − P2) + σ2 + (2Q11 − Q12)m
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2
]2
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This condition is trivially satisfied when

(G − E)(R + H − K) > 0 . (17)

In order to achieve the stabilization for the unperturbed solutions (11), the two
amplitudes m and n need to have real values while the stability criterion is satisfied.
This may be achieved in practice. For example, with
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This is automatically satisfied. Accordingly, the real nature for the amplitudes
of the unperturbed solutions (11) requires that
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However, we wish to examine the stability of the unperturbed solutions (11).
To accomplish this we perturb each solution according to

α = (m + ζ(x, t)) exp(i$t) , β = (n + ξ(x, t)) exp(2i$t) , (23)

where ζ and ξ are the perturbed solutions to be determined. Linearizing in ζ and
ξ we obtain

i
∂ζ

∂t
+ P1

∂2ζ

∂x2
− Q11(ζ + ζ̄)m2 − Q21(ξ + ξ̄)mn + i

∂

∂x
(Kξm + Hζ̄n) (24)

+σ1 (R + H − K)
(

ξm + (ζ̄ − ζ)n
)

= 0 ,

i
∂ξ

∂t
+ P2

∂2ξ

∂x2
− Q22(ξ + ξ̄)n2 − Q12(ζ + ζ̄)mn + iEm

∂ζ

∂x
(25)

+2σ1(G − E)ζm − σ1(G − E)ξ
m2

n
= 0 .

If the solutions of the above system are proportional to exp(−iqx − iΩt), such
that

ξ(x, t) = ξ0 exp(−iqx − iΩt) and ζ(x, t) = ζ0 exp(−iqx − iΩt) , (26)
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with constant coefficients ξ0 and ζ0, then the following dispersion relation relates
the modulation frequency Ω and the modulation wavenumber q by

Ω2 − h1Ω + h0 = 0 , (27)

where
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Because the stability is presented when Ω is real, which requires the discrimination of
the above dispersion relation to be positive, hence the stability criteria are presented
as
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provided that condition (11) is satisfied. This stability criterion depends on the two
amplitudes of the unperturbed solutions (11) as well as on the wavenumber of the
perturbation disturbance. The above stability condition can be trivially satisfied
when

[qE + Q12 − 2σ1(G − E)] [qK + Q12n − σ1(R + H − K)] > 0 . (30)

In view of the disturbance wavenumber q given by (29) the above inequality
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Finally, stability conditions can be summarised as

Q22(ER − EK + 3EH − 2GH) > 0 ,

Q22(R + H − K)(K − H) > 0 ,

EK > 0 , (32)

Q12Q21 > 0 ,

HQ22(Q12 + Q21) > 0 ,

(E + K)(Q12Q21 − Q11Q22) > 0 .

At the perfect resonance both the detuning parameters σ1 and σ2 should ap-
proach zero. At this end, the constraint (16) is trivially satisfied. Further, the
temporal solutions (11) may have the frequency $ = Q12Q21 − Q11Q22 associates
with the amplitudes m2 = Q22 − 2Q21 and n2 = 2Q11 − Q12. At this stage the
above stability conditions (30)–(32) will reduce to

[

Q12Q22Hn2 + Em2 (Q12Q21 − Q11Q22)
]

×
[

Q21Q22Hn2 + Km2 (Q12Q21 − Q11Q22)
]

> 0 .
(33)

This is the stability criterion at the perfect second resonance case and hence stability
condition for the coupled nonlinear Schrödinger equations (1) and (2) has been
achieved.

Inspection of the two coupled nonlinear Schrödinger equations (1) and (2) reveals
that there are 11 different coefficients. These coefficients are divided into three
kinds. Four coefficients (Q11 Q22, Q12 and Q21) for the cubic nonlinear terms, five
coefficients (R, K, H, G and E) refer to the parametric and quadratic nonlinear
terms and finial two coefficients (P1 and P2) of the linear terms and represent the
rate of the initial group velocity. Clearly, these coefficients play some roles in the
stability configuration. In order to screen the impact of these coefficients in the
stability criteria, some numerical calculations should be made. Before proceeding
in numerical calculations, we may rearrange the stability condition (29) as

a4q
4 + a2q

2 + a1q + a0 > 0, (34)

where the significance of the coefficients aj is clear from the context. The equality
for the above relation refers to the marginal stability curve.

3. Numerical illustrations for the secondary-resonance case

In this section, we are interested in screening a numerical picture for the stability
criteria (34), taking into account the values of the two amplitudes m and ngiven
by (18) and (19). The equality of the relation (34) refers to the transition curves
separating stable region from unstable region at the self-secondary resonance case.
The calculations are made in order to evaluate the modulation wavenumber q versus
the detuning parameterσ1. The calculation results are displayed in the plane (q −
σ1). The bifurcation curves are emanating from a specifying point at a certain
q known as a resonance point. These curves bound an unstable region which is
embedded inside the resonance case. The stable area surrounds the unstable region.
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Figure 1 Represents the stability diagram at the self-second-resonance case. The diagram screen
the influence of the dispersion parameter P1 on the stability criteria. The curves refer to the
equality corresponding to the condition (34). The calculations are made for R = H = K = G =
E = Q21 = Q12 = 1, Q11 = 4 , Q22 = 3, P2 = 1 and σ2 = 0.1

In the stability diagram, the symbol S refers to the stable region while the symbol
U indicates the unstable region.

In order to catch the role of each coefficient for equations (1) and (2) in the
stability criteria we proceed as follows: All the eleven coefficients for the coupled
equations (1) and (2) are held fixed to the unit value except one coefficient which
has slightly changed. This procedure allows us to discuss the influence of a cho-
sen coefficient on the stability profile. The impact of the dispersion parameters P1

or P2 on the stability diagram has been illustrated in Figs. 1 and 2, respectively.
In Fig. 1, some variation for parameter P1 is made, while parameter P2 has unit
value. It seems as P1 is increased, from P1 = 1.5 toP1 = 2.0, the unstable region
increases associated with shifting the resonance point to the direction of decreas-
ing the detuning parameter σ1. At this stage, the dispersion parameter P1 has a
destabilizing role. A more increase in P1, leads to some contraction in the unstable
region are observed associated with shifting the resonance point into the direction
of increasing the parameterσ1. This shows that P1 has a stabilizing role. However,
we observe that there are two different roles for increasing the parameter P1 from
the value of 1.5 to the value of 3.5. At this end, increasing P1 plays a dual role in
the stability criteria. In Fig. 2, the examination is made in the stability picture for
decreasing parameter P2. It is found that the decrease in P2 behaves in the stability
configuration similar to the increase of parameter P1.

The examination of the influence of the five coefficients of the periodic terms has
been displayed in Figs. 3–6. Both the coefficients R and H behave the same role
in the stability examination (see the stability criteria (28)). In Fig. 3, the stability
diagram is made of variation the coefficient R. Inspection of the stability diagram
leads to catch that the increase in R plays a destabilizing influence. While the
influence of the parameter K has been illustrated in Fig. 4. It seems that there are
two roles for increasing the coefficient K. A stabilizing influence is due to smaller
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Figure 2 The variation for the parameter P2 on the stability picture for the same system as in
Fig. 1

values of the detuning parameter σ1 and a destabilizing influence is due to larger
values of σ1. Thus, there is a dual role in the stability criteria for increasing the
coefficient K. The increase in values of G leads to a contraction in the unstable
region associate with shifting the resonance point into the direction of increasing
both q and σ1 as shown in Fig. 5. Therefore, the increase in the coefficient G plays
a stabilizing role in the stability diagram.

Fig. 6 illustrates the influence of the variation in the coefficient E on the stability
picture. It seen that for the specific value of E = 0.7, the resonance point occurs
corresponds to the negative values for σ1. The unstable region has a minimum
width that corresponds to very small positive values of σ1. As σ1 is increased
the width of the unstable region increases. This shows that the increase in σ1

plays a destabilizing effect. As E is increased to the value E = 0.9, the unstable
region has been separated into two unstable regions with two resonance points.
One region corresponds to larger values of σ1 and the other region corresponds to
smaller and negative values of σ1. For continue increasing in E, the unstable region
corresponding to small values of σ1, has an extension in its width associated with a
decrease in the second unstable region. For E = 1.5, more extending in the unstable
region is observed. In addition the resonance point occurs at σ1

∼= 0.2. It seems that
there are two different roles for the stability criteria between E = 0.7 and E = 1.5.
However, the increase in E plays a dual role in the stability picture.

The examination of the influence of the cubic nonlinear coefficients Qij is il-
lustrated in Fig. 7. The calculations showed that the increase of these coefficients
(Qij = QQ̃ij) plays a dual role in the stability criteria.

Inspection of the variation for the detuning parameter σ2 reveals that the in-
crease in the parameter σ2 plays a destabilizing influence in the stability picture as
shown in Fig. 8.
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Figure 3 The illustration for the parameter R

Figure 4 The influence of the parameter K

Figure 5 The illustration for the parameter G
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Figure 6 The impact of the parameter E on the stability configuration

Figure 7 The impact of increasing the cubic nonlinear coefficients Qij on the stability behavior

Figure 8 The influence for increasing the detuning parameter σ2 on the stability plane
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4. Cubic self-interaction of the primary waves and stability description

The derivation of the nonlinear equations (3) and (4) is due to nonlinear interaction
between two primary harmonic waves having the following form:

u(x, t) =
(

A exp(iω1t) + Ā exp(−iω1t)
)

exp(ikx) , (35)

v(x, t) =
(

B exp(iω2t) + B̄ exp(−iω2t)
)

exp(ikx) , (36)

in which ωj , j = 1, 2 are the angular frequencies and k is the wavenumber which is
assumed to be real and positive, and A & B are the amplitude of these wavetrains.
The superposed bar refers to the complex conjugate variable. When the interaction
between these two primary waves is centered around (k, ω1) and (k, ω2), where ω2

∼=
3ω1 (say), the self-third-harmonic resonance is presented. A nonlinear interaction
forces us to distinguish between two cases. The first case deals with ω1 and ω2

being different (the non-resonance case that is out of our scope). The other is the
self-third-harmonic resonance case which arises when ω2 (say) near 3ω1 (say). To
express the nearness of these frequencies, we define

ω2 = 3ω1 + σ , (37)

where σ is a small quantity which represents the detuning parameter [4]. Nonlinear
interactions for equations (35) and (36) are based on the above relation (26). The
analysis results are the previous two coupled nonlinear Schrödinger equations (3)
and (4).

5. Stability analysis at the neighborhood of the cubic-resonance case

The stability analysis should be divided into two versions according if σ tends to
zero or not. When σ tends to zero in the above system the perfect resonance case
arises. Otherwise, the case of the neighborhood of the resonance is present. The
absence of both S1 and S2 leads to the non-resonance case.

In order to accomplish the stability criteria for the coupled system of equations
(3) and (4) we use the temporal modulation technique [16-19]. Suppose that the
solutions of this system are stationary in x and depend, only, on the time t which
are given by

[

A
B

]

=

[

m1

m2

]

exp

(

1

2
iσt

)

, (38)

where m1 and m2 are two real amplitudes satisfying the following equation:

S2m
3 + (Q12 − Q11)m

2 − S1m + (Q22 − Q21) = 0 . (39)

This is a cubic equation in the stratified m = m1

m2

. From elementary algebra, m

must be real when α2 + β2 ≥ 0, where

α =
(Q12 − Q11)

2 − S1S2

9S2
2

,

β = −

[

S1(Q12 − Q11) + 3S2(Q22 − Q21)

6S2

2

+

(

Q12 − Q11

3S2

)3
]

.
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As usual, we should perturb the time-dependent solution (38) to determine the
stability conditions. Hence, the perturbation has the form:

[

A
B

]

=

[

m1 + ψ1(x, t)
m2 + ψ2(x, t)

]

exp

(

1

2
iσt

)

, (40)

where ψr are complex functions to be determined. Linearizing in ψr, we find that
ψr satisfy the following system:

i
∂Ψ

∂t
+ P

∂2Ψ

∂x2
= (MΨ + NΨ̄), (41)

where Ψ is a vertical matrix of type 2 × 1 with components ψ1 and ψ2

Ψ =

[

ψ1

ψ2

]

,

while P , M and N are 2 × 2 matrices

P =

(

P1 0
0 P2

)

,

M =

(

Q11m
2
1
− S1m1m2 Q21m1m2 + S1m

2
1

Q12m1m2 + 3S2m
2
1

Q22m
2
2

)

,

N =

(

Q11m
2

1
+ 2S1m1m2 Q21m1m2

Q12m1m2 Q22m
2
2

)

.

If the real and imaginary parts of Ψ are proportional to exp
(

iqm1x + iΩm2
2
t
)

,
where q and Ω are the modulation wavenumber and frequency respectively, they
are related by the following dispersion relation:

Ω4 − (a1 + a3)Ω2 + (a1a3 − a2a4) = 0 , (42)

where

a1 = P 2
1
m2q4 + P1(2Q11m − 3S1)mq2 + 3(2Q21S2 + S1S2m − 2Q11S1)m,

a2 = ((P1 + P2)S1m + 2P2Q21) mq2 + 2Q11S1m
2,

a3 = P 2
2
m2q4 + 2P2Q22q

2 + S1(3S2m + 2Q12)m,
a4 = (3(P1 + P2)S2m + 2P1Q12) mq2 − 6(Q12S1 − Q22S2) − 9S1S2m.

It is known that stability arises whence Ω having real roots. Since the above dis-
persion relation is a quadratic in Ω2, hence the stability arises whence the two roots
of equation (31) are both real and positive. This can be accomplished when

(a1 + a3) > 0 , (a1a3 − a2a4) > 0 and (a1 − a3)
2 + 4a2a4 > 0 . (43)

These are the stability criteria that are imposed from linear perturbation properties
for the two periodic solutions (38). Clearly, these stability criteria depend on the
coefficients that appear into equations (3) and (4) as well as on the ratio of the
two amplitudes m1, m2 and finally on the disturbance wavenumber q. To seek
the above stability criteria without depending on the disturbance q, we use the
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Hurwitz criterion and then the stability will be available for negative real roots of
the equalities for (43). These conditions are reduced as follows:

The first-condition of (43) yields

2P1Q11m
2 − 3P1S1m + 2P2Q22 > 0 , (44)

6S1S2m
2 + 6S2Q21m + S1(Q12 − 3Q11) > 0 . (45)

The second-condition of (43) reduces to

S1S2 [(3mS2 + 2Q12) (mS1 + 2Q21) − 4Q11Q22] > 0 , (46)

S1P1P2 (−S2(−3S1 + 2mQ11)+

2P1Q22)
3
((3mS2 + 2Q12)(mS1 + 2Q21)−

4Q11Q22) + P2

(

6m3S1Q11P
2

2
(3S1 − 2mQ11)+

2Q22P
2

1
(−m(3mS2 + 2Q12)(mS1 + 2Q21)−

2 (3S1 − 2mQ11)Q22) + mP1P2(m
2(9mS2

1
S2−

2Q11(3mS2 + 2Q12)(mS1 + 2Q21))+ (47)

2(3S1 − 2mQ11)
2Q22))(−2mS2P1Q22+

P2((3mS2 + 2Q12)(mS1 + 2Q21)−

2Q11(m
3S2 + 2Q22)))) > 0 .

The third-condition of (43) imposes the following inequalities:

(3mS2(P1 + P2) + 2P1Q12) (mS1(P1 + P2) + 2P2Q21) > 0 , (48)

m(mS1P1((−3S1 + 2mQ11)(3mS2 + 2Q12) + 6S2Q22)+

3P2(2m
3S1S2Q11−

(mS1 + 2Q21)(3mS1S2 + 2S1Q12 − 2S2Q22))) > 0, (49)

S1Q11(3mS1S2 + 2S1Q12 − 2S2Q22) > 0 . (50)

However the stability constraint that must be satisfied at the self-cubic-resonance
for two co-propagating wavetrains has been achieved.

For a special case, when the two parameters S1 and S2 tend to zero into the two
coupled nonlinear Schrödinger equations (3) and (4), the resulting system should be
governing the non-resonance case. The system is composed of two coupled nonlinear
Schrödinger equations that govern the non-resonance case as those discussed before
by Tan and Boyd [12]. At this stage, equation (29) gives the value of the stratified
amplitude m in the following form:

m2 =
Q22 − Q21

Q11 − Q12

. (51)

Here we explore the stability criterion for these coupled equations as a special
case of (43). Accordingly, the stability conditions (43) will reduce to

(P 2

1
+ P 2

2
)m2q2 + 2(P1Q11m

2 + P2Q22) > 0 , (52)
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P 2

1
P 2

2
m2q4 + 2P1P2(P1Q22 + P2Q11)q

2 + 4P1P2(Q11Q22 − Q12Q21) > 0 , (53)
[

(P 2

1
− P 2

2
)m2q2 + 2(P1Q11m

2 − P2Q22)
]2

+ 16P1P2Q12Q21m
2 > 0 . (54)

These stability conditions can be satisfied, in arbitrary of the disturbance wave-
number q, whence

P1Q11m
2 + P2Q22 > 0 ,

P1P2(P1Q22 + P2Q11) > 0 ,

P1P2Q12Q21 > 0 ,

P1P2(Q11Q22 − Q12Q21) > 0 .

These conditions, for arbitrary of m, can be reduced to

P1Q11 > 0, P2Q22 > 0 and P1P2(Q11Q22 − Q12Q21) > 0 . (55)

The above conditions represent the stability criteria at the non-resonance case.
At the perfect resonance case the parameter σ should vanish from equations (3)

and (4). The formal result is given by

i
∂A

∂t
+ P1

∂2A

∂x2
= (Q11 |A|

2
+ Q21 |B|

2
)A + S1Ā

2B , (56)

i
∂B

∂t
+ P2

∂2B

∂x2
= (Q12 |A|

2
+ Q22 |B|

2
)B + S2A

3 . (57)

Since the stability conditions (43) are derived independently from the parameter
σ, hence the stability criterion for the two coupled nonlinear Schrödinger equations
(56) and (57) cannot be derived from the above stability conditions (43) as a special
case. In what follows, we shall seek the stability conditions that cover the perfect
cubic-resonance case.

6. Stability discussion at the perfect cubic-resonance case

We suppose the two-coupled nonlinear Schrödinger equations (56) and (57) to have
the following time-dependent solutions:

[

A
B

]

=

[

n1 exp(i$1t)
n2 exp(i$2t)

]

, (58)

where n1 and n2 are non-zero real amplitudes, $1 and $2 are two frequency defined
as

−$1 = Q11n
2

1
+ Q21n

2

2
+ S1n1n2 exp (i($2 − 3$1)t) , (59)

−$2 = Q12n
2

1
+ Q22n

2

2
+ S2

n3

1

n2

exp (−i($2 − 3$1)t) . (60)

In the light of the relation between the primary waves at the perfect resonance
(ω2 = 3ω1), the above solutions (43) take the form

[

A
B

]

=

[

n1 exp(i$t)
n2 exp(3i$t)

]

. (61)
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Consequently n1and n2are related by

n3S2 + (Q12 − 3Q11)n
2 − 3S1n + (Q22 − 3Q21) = 0 ; n = n1/n2 . (62)

Let the linear perturbation for (46) be described as
[

A
B

]

=

[

n1

n2

+φ1(x, t) exp(i$t)
+φ2(x, t) exp(3i$t)

]

, (63)

where φ1 and φ2 are small increments to be determined. Linearizing in φ1 and φ2,
we find that they satisfy the following system

i
∂Φ

∂t
+ P

∂Φ

∂x2
= (UΦ + V Φ̄), (64)

where Φ is a vertical matrix of type 2 × 1 with components φ1 and φ2

Φ =

[

φ1

φ2

]

,

and U representsa square matrix of the type 2 × 2

U =

[

Q11n
2
1
− S1n1n2 Q21n1n2 + S1n

2
1

Q12n1n2 + 3S2n
2
1

Q22n
2
2
− S2n

3
1
/n2

]

, (65)

while the matrix V can be obtained from the matrix N by replacing the amplitudes
mj by nj . When the real and imaginary parts of φ1 and φ2 are proportional to
exp

(

iqn1x + iΩn2

2
t
)

, the modulation frequency Ω will satisfy the following disper-
sion relation:

Ω4 − (b1 + b3)Ω2 + (b1b3 − b2b4) = 0 . (66)

where

b1 = n3S1(2Q12 + 3nS2) + n2(P1q
2n − 3S1)(P1q

2n + 2Q11n + S1) ,
b2 = n2S1(P2q

2n2 + 2Q22 − n3) + n2(P1q
2n − 3S1)(2Q21 + nS1) ,

b3 = 3n3S2(2Q21 + S1n) + n2(P2q
2n2 + 2Q22 − n3)(P2q

2 − n) ,
b4 = 3n3S2(P1q

2n + 2Q11n + S1) + n3(2Q12 + 3S2n)(P2q
2 − n) .

As discussed in the previous section the stability arises when

(P1q
2n + 2nQ11 + S1)(P1q

2n − 3S1)

+nS1(3nS2 + 2Q12) + 3nS2(nS1 + 2Q21)+

(n − P2q
2)(n3 − P2q

2n2 − 2Q22) > 0 , (67)

(3nS1S2 − 3nS1 + q2(3S1P2 + nP1(n − P2q
2)))×

(−P2q
2n2(S1 + 2nQ11) + n3(S1 + 3S1S2 + 2nQ11) +

+2n2S1Q12 + 2n(3nS2 + 2Q12)Q21+

nP1q
2(n3 − P2q

2n2 − 2Q22) − 2(S1 + 2nQ11)Q22) > 0, (68)

((P1q
2n − 3S1)(S1 + P1q

2n + 2nQ11)+

nS1(3nS2 + 2Q12) − 3nS2(nS1 + 2Q21) − (n − P2q
2)

×(n3 − P2q
2n2 − 2Q22))

2 − 4n(3S2(S1 + P1q
2n + 2nQ11)+

(P2q
2 − n)(3nS2 + 2Q12))

×((P1q
2n − 3S1)(nS1 + 2Q21) + S1(P2q

2n2 − n3 + 2Q22)) > 0 . (69)
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In this discussion we have focused on the linear stability properties of two co-
propagating wavetrains to determine the linear terms responsible at the prefect
cubic-resonance case.
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