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The equations of generalized thermo-viscoelasticity based on Lord-Shulman (L-S), Green
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1. Introduction

The classical uncoupled theory of thermoelasticity predicts two phenomena not
compatible with physical observations. First, the equation of heat conduction of this
theory does not contain any elastic terms contrary to the fact that elastic changes
produce heat effects. Second, the heat equation is of parabolic type predicting
infinite speeds of propagation for heat waves [1].

Lord and Shulmann [2] introduced the theory of generalized thermoelasticity
with one relaxation time by postulating a new law of heat conduction to replace the
classical Fourier law. This new law contains the heat flux vector as well as its time
derivative. It contains also a new constant that acts as a relaxation time. The heat
equation of this theory is of the wave-type, ensuring finite speeds of propagation for
heat and elastic waves. The remaining governing equations for this theory, namely,
the equations of motions and constitutive relations remain the same as those for the
coupled and the uncoupled theories. Dhaliwal and Sherief [3] extended this theory
to general anisotropic media in the presence of heat sources. In two-dimensional
generalized thermo-viscoelasticity this theory was used recently by Ezzat et al. [4].

Müller [5] was the first introduced the theory of generalized thermoelasticity
with two relaxation times. A more explicit version was then introduced by Green
and Laws [6], Green and Lindsay [7] and independently by Suhubi [8]. In this theory
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the temperature rates are considered among the constitutive variables. This theory
also predicts finite speeds of propagation as in Lord-Shulmann’s theory. Ignaczak [9]
studied a strong discontinuity wave and obtained a decomposition theorem for this
theory [10]. Ezzat et al. [11] established the model of one-dimensional equations of
generalized thermo-viscoelasticity with two relaxation times. Ezzat et al. [12] stud-
ied the model of two-dimensional equations of generalized thermo-viscoelasticity
with two relaxation times. The state space formulation for these investigations
is introduced. Ezzat and Othman [13] have studied some problems in magneto-
thermoelasticity with thermal relaxation in a medium of perfect conductivity.

Gross [14], Staverman and Schwarzl [15], Alfery and Gurnee [16] and Ferry [17]
investigated the mechanical-model representation of linear viscoelastic behaviour
results. A reciprocity theorem for the theory of viscoelasticity was derived by Fung
[18] and Pobedria [19] derived the reciprocity theorem for the coupled thermo-
viscoelasticity.

2. Formulation of the fundamental equations

In the isotropic thermo-viscoelastic medium, [20,21] give the constitutive equation

Sij =

t
∫

0

R(t − τ)
∂eij(x, τ)

∂τ
dτ = R̂(eij) . (1)

where R(t) is the relaxation function such that R(0) = 2µ, R(∞) > 0,

Sij = σij − σδij , eij = εij −
e

3
δij , e = εkk , σ =

σkk

3
, σij = σji , (2)

εij =
1

2
(ui,j + uj,i) , (3)

with the assumption [20]

σij(x, t) = 0 , εij(x, t) = 0 , −∞ < t < 0 .

Assuming that the relaxation effects of the volume properties of the material are
ignored [18], one can write for the generalized theory of thermo-viscoelasticity with
thermal relaxation times

σ = Ke − γ(T − T0 + νṪ ) . (4)

The equation of motion
σij,j + Fi = ρüi . (5)

The generalized heat conduction equation

kT,ii = ρCE(Ṫ + τ0T̈ ) + γT0(ė + τ0δë) − Q (6)

where k, CE , µ, γ, K, T0, ρ, τ0, ν are positive constants, together with the previous
equations constitutes a complete system of generalized thermo-viscoelasticity with
thermal relaxation times for isotropic medium.
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In the above equations a dot denotes differentiation with respect to time, while
a comma denotes material derivatives. The summation notation is used.

Moreover, the use of the relaxation times τ0, ν and a parameter δ makes the
aforementioned fundamental equations possible for the three different theories:

1. Classical Dynamical Coupled theory [1]: τ0 = 0, ν = 0, δ = 0.

2. Lord-Shulman’s theory [2]: ν = 0, τ0 > 0, δ = 1.

3. Green-Lindsay’s theory [7]: ν ≥ 0, τ0 > 0, δ = 0.

3. Uniqueness theorem

Assuming that a linear isotropic thermo-viscoelastic material occupies a regular
region D [22] with boundary surface B in the three-dimensional space, there is only
one system of functions: ui(x, t), T (x, t) of class C(2) and σij(x, t), εij(x, t) of class
C(1), in the point P ∈ (D + B) having coordinates x = (x1, x2, x3) at t ≥ 0, which
satisfy Eqs. (1), (3) and (4) for x ∈ (D +B), t ≥ 0 and (5) and (6) for x ∈ D, t > 0,
with the boundary conditions

T = Φ(1)(xB , t) , ui = G
(1)
i (xB , t) , xB ∈ B , t > 0 , (7)

and the initial conditions

T = Φ(2)(x, 0) , ui = G
(2)
i (x, 0) , u̇i = G

(3)
i (x, 0) , x ∈ D , t = 0 , (8)

Let u
(1)
i , T (1), . . . be two solution sets of Eqs. (1)–(6) with the same body forces,

the same relaxation function, the same boundary conditions (7) and the same initial
conditions (8). Consider the difference functions

u∗

i = u
(1)
i − u

(2)
i , T ∗ = T (1) − T (2) , ε∗ij = ε

(1)
ij − ε

(2)
ij , . . . (9)

which satisfy Eqs. (1)–(3), thus Eqs. (4)–(6) for the difference functions become

σ∗

ij,j = ρü∗

i , σ∗ = Ke∗ − γ
(

T ∗ + νṪ ∗

)

. (10)

kT ∗

,ii = ρCE

(

Ṫ ∗ + τ0T̈
∗

)

+ γT0 (ė∗ + τ0δë
∗) (11)

The difference functions (9) satisfy the homogeneous boundary conditions, thus

T ∗(xB , t) = 0 , u∗

i (xB , t) = 0 , xB ∈ B , t > 0 , (12)

T ∗(x, 0) = 0 , u∗

i (x, 0) = 0 , u̇∗

i (x, 0) = 0 , x ∈ D , t = 0 , (13)

The Laplace transform of the difference functions (9) with real s is defined as

f̄∗(x, s) =

∞
∫

0

e−stf∗(x, t) dt , s > 0 . (14)
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Applying (14) to the system of equations obtained for the difference functions and
omitting the asterisks and bars since the following analysis concerns only the dif-
ference functions we get

σij,j = s2ρ, ui , (15)

kT,ii = ρCEs(1 + τ0s)T + γT0s(1 + τ0δs)e , (16)

εij =
1

2
(ui,j + uj,i) , (17)

Sij = sReij , Sij = σij − σδij , eij = εij −
e

3
δij , σ = Ke − γ(1 + νs)T , (18)

T (xB , s) = 0 , ui(xB , s) = 0 , xB ∈ B . (19)

R = R(s) > 0 the Laplace transform of the relaxation function.
Consider the integral

∫

D

σijεij dV =

∫

D

σijui,j dV =

∫

D

(σijui),j dV −

∫

D

σij,jui dV . (20)

Using the divergence theorem and taking into considering Eq. (19) one obtains

∫

D

(σijui),j dV =

∫

B

uiσijnj dA = 0 , (21)

where, nj the outward unit normal to the surface B. Thus Eq. (20) takes the form

∫

D

σijεij dV +

∫

D

σij,jui dV = 0 . (22)

From Eq. (18) we obtain

σijεij = σe + Sijeij = Ke2 + sReijeij − γ(1 + νs)Te . (23)

Substituting from Eqs. (15) and (23) into Eq. (22) we obtain

∫

D

[

Ke2 + sReijeij + ρs2u2
i − γ(1 + νs)Te

]

dV = 0 . (24)

Since

TT,ii = (TT,i),i
− T,iT,i and

∫

D

(TT,i),i
dV =

∫

B

TT,ini dA = 0 , (25)

we have
∫

D

T (kT,ii),i
dV = −k

∫

D

T,iT,i dV . (26)

Substituting from Eq. (16) into Eq. (26) we obtain

∫

D

γTe dV = −
ρCE(1 + τ0s)

T0(1 + τ0δs)

∫

D

T 2 dV −
k

sT0(1 + τ0δs)

∫

D

T,iT,i dV . (27)
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Eq. (24) with Eq. (27) gives

∫

D

[

Ke2 + sReijeij + ρs2uiui +

(

m1

T0(1 + τ0δs)

)

T 2+

(

m2

T0(1 + τ0δs)

)

T,iT,i

]

dV = 0 , (28)

where

m1 = ρCE(1 + τ0s)(1 + νs) , m2 =
k(1 + νs)

s
.

The integrand function in Eq. (28), is the sum of squares, thus we conclude that

ui = 0 , T = 0 , e = 0 , eij = 0 ,

i.e., the Laplace transforms of all the difference functions (9) are zeros and ac-
cording to Learch’s theorem [23] the inverse Laplace transform of each is unique,
consequently

u∗

i = 0 , T ∗ = 0 , ε∗ = 0 , σ∗

ij = 0 .

This proves the uniqueness of the solution of the system of Eqs. (1)–(8) for the
Classical Dynamical Coupled theory when τ0 = 0, ν = 0, δ = 0, Lord-Shulman’
theory when ν = 0, τ0 > 0, δ = 1 and Green and Lindsay’ theory when ν ≥ 0,
τ0 > 0, δ = 0.

4. Reciprocity theorem

We derive the dynamic reciprocity relationship for a generalized thermo-visco-elastic
bounded body subjected to the action of a given body force Fi(x, t), a given heat
source Q(x, t), surface traction Ti over a part of the surface Bσ, while over the other
part Bu it is assigned the displacement gi and heating of the surface B = Bσ + Bu

to a given temperature Φ, under zero initial conditions, the mentioned actions start
at t > 0. Therefore, we assume the system of Eqs (1)–(6) to be given with the
following boundary and initial conditions:

Tn
i = σijnj = fi(xB , t) , xB ∈ Bσ , t > 0 , (29)

where nj is the outward-pointing unit normal vector to Bσ,

ui = gi(xB , t) , xB ∈ Bu , t > 0 , (30)

Θ = Φ (xB , t) , xB ∈ B , t > 0 , (31)

ui(x, t) =
∂ui(x, t)

∂t
, x ∈ D , t ≤ 0 , (32)

Θ(x, t) =
∂Θ(x, t)

∂t
, x ∈ D , t ≤ 0 , (33)

Fi = Q(x, t) = 0 , x ∈ B , t ≤ 0 , (34)

Φ(xB , t) = 0 xB ∈ D , t ≤ 0 , (35)

fi(xB , t) = 0 , xB ∈ D , t ≤ 0 , (36)
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gi(xB , t) = 0 xB ∈ D , t ≤ 0 , (37)

where Θ = T − T0, fi, gi and Φ are the given functions.

Substituting from Eq. (4) into Eq. (1) and taking Eq. (2) into consideration we
obtain

σij = R̂
(

εij −
e

3
δij

)

+ Keδij − γ
(

Θ + νΘ̇
)

δij . (38)

Performing the Laplace transform (14) over the system of equations (1)–(6),
(29)–(31) and (38) in view of Eqs. (32), (33) and omitting the bars, we get the
following system in Laplace transform domain:

Sij = sReij , (39)

Sij = σij − σδij , eij = εij −
e

3
δij , (40)

εij =
1

2
(ui,j + uj,i) , (41)

σ = Ke − γ(1 + νs)Θ , (42)

σij,j + Fi = ρs2ui , (43)

kΘ,ii = ρCEs(1 + τ0s)T + γT0s(1 + τδs)e − Q , (44)

σij = sR(εij −
e

3
δij) + Keδij − γ(1 + νs)Θδij , , (45)

ui = gi on Bu , σijnj = fi on Bσ , Θ = Φ on B . (46)

Now consider two problems where applied body forces, heat sources, surface
tractions, assigned surface displacements and surface temperature are specified dif-
ferently. Let the variables involved in these two problems is distinguished by su-

perscripts in parentheses. Thus, we have u
(1)
i , ε

(1)
ij , e(1), σ

(1)
ij , Θ(1), . . . for the first

problem and u
(2)
i , ε

(2)
ij , e(2), σ

(2)
ij , Θ(2), . . . for the second problem. Each set of

variables satisfies the system of Equations (39)–(46).

Using Eq. (41) the assumption σij = σji and the divergence theorem we get

∫

D

σ
(1)
ij ε

(2)
ij dV =

∫

D

σ
(1)
ij u

(2)
i,j dV =

∫

D

(σ
(1)
ij u

(2)
i ),j dV −

∫

D

σ
(1)
ij,ju

(2)
i dV

=

∫

B

σ
(1)
ij nju

(2)
i dA −

∫

D

σ
(1)
ij,ju

(2)
i dV (47)

Substituting from Eqs. (43) and (46) into Eq. (47) we obtain

∫

D

σ
(1)
ij ε

(2)
ij dV

∫

Bσ

f
(1)
i u

(2)
i dA +

∫

Bu

σ
(1)
ij njg

(2)
i dA −

∫

D

ρs2u
(1)
i u

(2)
i dV +

∫

D

F
(1)
i u

(2)
i dV . (48)
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A similar expression is obtained for the integral
∫

D
σ

(2)
ij ε

(1)
ij dV , from which together

with Eq. (48) it follows that

∫

D

(σ
(1)
ij ε

(2)
ij − σ

(2)
ij ε

(1)
ij ) dV =

∫

Bσ

(f
(1)
i u

(2)
i − f

(2)
i u

(1)
i ) dA +

∫

Bu

(σ
(1)
ij g

(2)
i − σ

(2)
ij g

(1)
i )nj dA +

∫

D

(F
(1)
i u

(2)
i − F

(2)
i u

(1)
i ) dV . (49)

Now multiplying ε
(2)
ij by the corresponding Eq. (45) for the first problem, ε

(1)
ij by

the analogous equation for the second problem, subtracting and integrating over
the region D we obtain

∫

D

(σ
(1)
ij ε

(2)
ij − σ

(2)
ij ε

(1)
ij ) dV =

∫

D

sR

[

(ε
(1)
ij −

e(1)

3
δij)ε

(2)
ij − (ε

(2)
ij −

e(2)

3
δij)ε

(1)
ij

]

dV +

K

∫

D

(e(1)ε
(2)
ij δij − e(2)ε

(1)
ij δij) dV − γ(1 + νs)

∫

D

(Θ(1)ε
(2)
ij δij −Θ(2)ε

(1)
ij δij) dV (50)

Since εijδij = e, we obtain

∫

D

(σ
(1)
ij ε

(2)
ij − σ

(2)
ij ε

(1)
ij ) dV = γ(1 + νs)

∫

D

(Θ(2)e(1) − Θ(1)e(2)) dV . (51)

From Eqs. (50) and (51) we get the first part of the reciprocity theorem:

∫

Bσ

(f
(1)
i u

(2)
i − f

(2)
i u

(1)
i ) dA +

∫

Bu

(σ
(1)
ij njg

(2)
i − σ

(2)
ij njg

(1)
i ) dA+ ,

∫

D

(F
(1)
i u

(2)
i − F

(2)
i u

(1)
i ) dV + γ(1 + νs)

∫

D

(Θ(1)e(2) − Θ(2)e(1)) dV = 0 . (52)

which contains the mechanical causes of motion Fi, fi and the prescribed surface
displacements gi.

To derive the second part we multiply Θ(2) by the corresponding equation (44)
for the first problem, Θ(1) by the analogous equation for the second problem, sub-
tracting and integrating over D, we obtain

k

∫

D

(Θ(2)Θ
(1)
,ii − Θ(1)Θ

(2)
,ii ) dV = γT0s(1 + τ0sδ)

∫

D

(Θ(2)e(1) − Θ(1)e(2)) dV −

∫

D

(Θ(2)Q(1) − Θ(1)Q(2)) dV , (53)

since,

Θ(2)Θ
(1)
,ii = (Θ(2)Θ

(1)
,ii ),i − Θ

(1)
,i Θ

(2)
,i and Θ(1)Θ

(2)
,ii = (Θ(1)Θ

(2)
,ii ),i − Θ

(2)
,i Θ

(1)
,i (54)

Eq. (53) can be written, using the divergence theorem and Eq. (46), in the form

k

∫

B

(Φ(2)Θ
(1)
,N − Φ(1)Θ

(2)
,N ) dA − γT0s(1 + τ0sδ)

∫

D

(Θ(2)e(1) − Θ(1)e(2)) dV +
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∫

D

(Θ(2)Q(1) − Θ(1)Q(2)) dV = 0 , (55)

where Θ,N = Θ,iNi, the derivative of Θ in the direction of the normal to the surface
B,Ni is the outward-pointing unit normal to the surface B. Eq. (55) constitutes
the second part of reciprocity theorem which contains the thermal causes of motion
Q,Φ.

Combining (52) and (55) we obtain the general reciprocity theorem in Laplace
transform domain:

T0s(1 + τ0sδ)

{
∫

Bσ

(f
(1)
i u

(2)
i − f

(2)
i u

(1)
i ) dA +

∫

Bu

(σ
(1)
ij njg

(2)
i − σ

(2)
ij njg

(1)
i ) dA +

∫

D

(F
(1)
i u

(2)
i − F

(2)
i u

(1)
i ) dV

}

− k(1 + νs)

∫

D

(Θ
(1)
,N Φ(2) − Θ

(2)
,N Φ(1)) dA−

(1 + νs)

∫

D

(Q(1)Θ(2) − Q(2)Θ(1)) dV = 0 (56)

Using the convolution theorem [23]:

£
−1 {F (s)G(s)} =

∫ t

0

f(x, t − τ)g(x, τ) dτ =

∫ t

0

g(x, t − τ)f(x, τ) dτ , (57)

using the symbolic notation

L(f) = f(x, τ) + ν
∂f(x, τ)

∂τ
, (58)

and inverting Eq. (52) we obtain the first part of reciprocity theorem in the final
form

∫

D

∫ t

0

F
(1)
i (x, t − τ)u

(2)
i (x, τ) dτ dV +

∫

Bσ

∫ t

0

f
(1)
i (x, t − τ)u

(2)
i (x, τ) dτ dA+

∫

Bu

∫ t

0

σ
(1)
ij (x, t − τ)njg

(2)
i (x, τ) dτ dA + γ

∫

D

∫ t

0

Θ(1)(x, t − τ)L(e(2)) dτ dV =

∫

D

∫ t

0

F
(2)
i (x, t − τ)u

(1)
i (x, τ) dτ dV +

∫

Bσ

∫ t

0

f
(2)
i (x, t − τ)u

(1)
i (x, τ) dτ dA+

∫

Bu

∫ t

0

σ
(2)
ij (x, t− τ)njg

(1)
i (x, τ) dτ dA + γ

∫

D

∫ t

0

Θ(2)(x, t− τ)L(e(1)) dτ dV , (59)

and inverting Eq.(55) we obtain the second part of reciprocity theorem in the final
form

γT0(1 + τ0δs)

∫

D

∫ t

0

Θ(1)(x, t − τ)
∂e(2)(x, τ)

∂τ
dτ dV +

∫

D

∫ t

0

Q(1)(x, t − τ)Θ(2)(x, τ) dτ dV − k

∫

B

∫ t

0

Φ(1)(x, t − τ)Θ
(2)
,N (x, τ) dτ dV =

γT0(1 + τ0δs)

∫

D

∫ t

0

Θ(2)(x, t − τ)
∂e(1)(x, τ)

∂τ
dτ dV +
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∫

D

∫ t

0

Q(2)(x, t− τ)Θ(1)(x, τ) dτ dV − k

∫

B

∫ t

0

Φ(2)(x, t− τ)Θ
(1)
,N (x, τ) dτ dV . (60)

Finally, inverting (56) we obtain the general reciprocity theorem in the form

∫

D

∫ t

0

F
(1)
i (x, t − τ)

∂u
(2)
i (x, τ)

∂τ
dτ dV +

∫

Bσ

∫ t

0

f
(1)
i (x, t − τ)

∂u
(2)
i (x, τ)

∂τ
dτ dA+

∫

Bu

∫ t

0

σ
(1)
ij (x, t − τ)nj

∂g
(2)
i (x, τ)

∂τ
dτ dA+

k

T0(1 + τ0δs)

∫

B

∫ t

0

Φ(1)(x, t − τ)L(Θ
(2)
,N ) dτ dA−

1

T0(1 + τ0δs)

∫

D

∫ t

0

Q(1)(x, t − τ)L(Θ(2)) dτ dV =

∫

D

∫ t

0

F
(2)
i (x, t − τ)

∂u
(1)
i (x, τ)

∂τ
dτ dV +

∫

Bσ

∫ t

0

f
(2)
i (x, t − τ)

∂u
(1)
i (x, τ)

∂τ
dτ dA+

∫

Bu

∫ t

0

σ
(2)
ij (x, t − τ)nj

∂g
(1)
i (x, τ)

∂τ
dτ dA+

k

T0(1 + τ0δs)

∫

B

∫ t

0

Φ(2)(x, t − τ)L(Θ
(1)
,N ) dτ dA−

1

T0(1 + τ0δs)

∫

D

∫ t

0

Q(2)(x, t − τ)L(Θ(1)) dτ dV . (61)

In the particular case of an infinite thermo-viscoelasticity medium, assuming
that the body forces and the heat sources act only in a bounded region, the surface
integrals are absent and Eq. (56) takes the form

T0s(1+τ0sδ)

∫

D

(

F
(1)
i u

(2)
i − F

(2)
i u

(1)
i

)

dV = (1+νs)

∫

D

(

Q(1) Θ(2) −Q(2)Θ(1)
)

dV .

(62)
Inverting Eq. (62) we get

∫

D

∫ t

0

F
(1)
i (x, t − τ)

∂u
(2)
i (x, τ)

∂τ
dτ dV −

1

T0(1 + τ0sδ)

∫

D

∫ t

0

Q(1)(x, t − τ)L(Θ(2)) dτ dV =

∫

D

∫ t

0

F
(2)
i (x, t − τ)

∂u
(1)
i (x, τ)

∂τ
dτ dV −

1

T0(1 + τ0sδ)

∫

D

∫ t

0

Q(2)(x, t − τ)L(Θ(1)) dτ dV . (63)

This proves the reciprocity theorem of the solution of the system of Eqs. (39)–(45)
for the Classical Dynamical Coupled theory when τ0 = 0, ν = 0, δ = 0, Lord-
Shulman’ theory when ν = 0, τ0 > 0, δ = 1 and Green and Lindsay’ theory when
ν ≥ 0, τ0 > 0, δ = 0.



86 The Uniqueness and Reciprocity Theorems for Generalized ...

References

[1] Biot, M: Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., (1956),
27, 240.

[2] Lord, H, Shulman, Y: A Generalized dynamical theory of thermo-elasticity, J.

Mech. Phys. Solid, (1976), 15, 299-309.

[3] Dhaliwal, R, Sherief, H: Generalized thermoelasticity for an isotropic media,
Quart. Appl. Math., (1980), 33, 1-8.

[4] Ezzat, MA, Othman, MIA, El Karamany, AS: State space approach to two-
dimensional generalized thermo-viscoelasticity with one relaxation time, J. of Thermal

Stresses, (2002), 25, 295-316.

[5] Müller, I: The Coldness, A Universal function in thermo-elastic Solids, Arch. Rat.

Mech. Anal., (1971), 41, 319.

[6] Green, AE, Laws, N: On the entropy production inequality, Arch. Rat. Mech. Anal.,
(1972), 45, 47.

[7] Green, AE, Lindsay, KA: Thermoelasticity, Journal of Elasticity, (1972), 2, 1.

[8] Suhubi, ES: Thermoelastic solids, in: Continuum Physics II, Ch.2, Eringen, AC,
Ed.,, (1975), Academic, Press, New York.

[9] Ignaczak, J: A strong discontinuity wave in thermoelastic with relaxation times, J.

Thermal Stresses, (1985), 8, 25-40.

[10] Ignaczak, J: Decomposition theorem for thermoelasticity with finite wave speeds, J.

Thermal Stresses, (1985), 1, 41.

[11] Ezzat, MA, Othman, MIA, El Karamany, AS: State space approach to gener-
alized thermo-viscoelasticity with two relaxation times, (2002), Int. J. Engng. Sci.,
40, 283-302.

[12] Ezzat, MA, Othman, MIA, El Karamany, AS: State space approach to two-
dimensional generalized thermo-viscoelasticity with two relaxation times, J. Engng.

Sci., (2002), 40, 1251-1274.

[13] Ezzat, MA, Othman, MIA: State space approach to generalized magneto- thermo-
elasticity with thermal relaxation in a medium of perfect conductivity, J. Thermal

Stresses, (2002), 25, 409-429.

[14] Gross, B: Mathematical structure of the theories of viscoelasticity, (1953), Hermann,
Paris.

[15] Staverman, AJ, Schwarzl, F: Die physik der hochpolymeren, Stuart, HA, Ed.,
(1956), 4, Springer Verlag, Chapter 1.

[16] Alfrey, T, Gurnee, EF: Rheology theory and applications, Eirich, FR, Ed., 1,
(1956), Academic Press, New York.

[17] Ferry, JD: Viscoelastic properties of polymers, (1970), John Wiley & Sons, New York.

[18] Fung, YC: Foundation of solid mechanics, (1980), Prentice-Hall, Englewood Cliffs,
NJ.

[19] Pobedria, BE: Coupled problems in continuum mechanics, J. Durabilility and Plas-

ticity, Moscow State University, Moscow.

[20] Sternberg, E: On the analysis of thermal stresses in viscoelastic solids, Brown Univ.

Dir, J. Appl. Math. TR., (1963), 9, 213-219.

[21] Ilioushin, AA, Pobederia, BE: Mathematical theory of thermal visco-elastic,
(1970), Nauka, Moscow.

[22] Boley, B, Weiner, JH: Theory of thermal stresses, (1960), John Wiley & Sons, Inc.
New York.

[23] Churchill, RV: Operational mathematics, third ed., (1972), McGraw-Hill, NewYork.



Othman, MIA 87

Nomenclature

λ, µ Lamé’s constants,
K = λ + 2

3µ bulk modulus,
ρ density,
CE specific heat at constant strain,
t time,
T absolute temperature,

T0 reference temperature chosen so that
∣

∣

∣

T−T0

T0

∣

∣

∣
≪ 1,

ui components of displacement vector,
εij components of strain tensor,
σij components of stress tensor,
Sij components of stress deviator tensor,
eij components of strain deviator tensor,
k thermal conductivity,
τ0, ν two relaxation times,
αT coefficient of linear thermal expansion,
γ 3KαT ,
Q the strength of the applied heat source per unit mass.




